ALGEBRA

Unit 1.

Preliminaries

Relation.

Let A and B be non-empty sets. A subset ρ of A x B is called a relation or binary relation from A to B. i.e. If an ordered pair $(a,b) \in \rho$, then we say that a is related to b and it is denoted by a ρ b.

Examples.

- 1. In **Z**, $a \rho b$ means $a \le b$
- 2. In **Z**, $a \rho b$ means a < b
- 3. In **Z**, $a \rho b$ means a divides b
- 4. In **Z**, $a \rho b$ means ab is even
- 5. In Z, $a \rho b$ means ab is perfect square. etc....

Equivalence Relation.

A relation ρ on a set A is said to be equivalence relation if

(i)	Reflexive. apa.
(ii)	Symmetric. If apb then bpa.

(iii)	Transitive. If apb, bpc then apc.
	Ex.
	Let $S = Z$. apb means $a \equiv b \pmod{m}$.
	To Prove that ρ is an equivalence relation.

Proof.

 $a\equiv b \pmod{m}$ means a-b is multiple of m.

(i). Reflexive.

Clearly a - a = 0 which is multiple of m.

 $a \equiv a \pmod{m}$. apa. Hence reflexive is true.

(ii). Symmetric.

Let a ρ b. To prove that b ρ a.

Since apb, we have a -b is multiple of m.

Therefore, b-a is also multiple of m.

 $b \equiv a \pmod{m}$. Thus $b \rho a$.

(iii) Transitive.

Let a ρb , b ρ c then we have to prove that

aρc.

a ρ b implies a-b is multiple of m.

 $a - b = km \dots (1)$ where k is an integer.

 $b \rho c$ implies b - c is multiple of m.

i.e $b-c = k_1m....(2)$, where k_1 is an integer.

Now, $a - c = km + b - c = km + k_1m = (k+k_1)m$

Therefore, $a - c = k_2 m$, where $k_2 = k + k_1$ is also an integer.

Hence a - c is multiple of m.

i.e $a \equiv c \pmod{m}$

Hence a ρ c. Thus transitive is true.

Thus " \equiv " satisfies Reflexive, Symmetric and Transitive.

Hence \equiv is an equivalence relation.

PARTIAL ORDER RELATION.

A relation is ρ said to be a partial order relation if it satisfies the following three axioms.

(i). Reflexive. a ρa

(ii). Antisymmetric.

If apb, bpa then a = b

(iii). Transitive.

i.e if apb and bpc then apc.

Then ρ is said to be partial order relation and the set (S, ρ) is called **partial ordered set.**

Example.

The set (N, \leq) is a partial ordered Set.

Proof.

(i). Reflexive.

Clearly $a \le a$ for all $a \in N$.

(ii). Anti Symmetric.

Let $a \le b$, and $b \le a$. We have to prove that

a = b.

This is true only if a = b.

(iii). Transitive.

Let $a \leq b$ and $b \leq c$.

Then $a \le b \le c$.

Therefore $a \leq c$.

Hence transitive is true.

Thus "≤" satisfies reflexive, antisymmetric and transitive.

Hence, " \leq " is partial order relation in N.

Thus (N, \leq) is a partial ordered set.

GROUP.

Definition.

Let G be any set. Let * be binary operation defined in G. Then (G, *) is said to be a group if the following conditions are true.

(i). Closure Property.

For all $a, b \in G$, $a^*b \in G$.

(ii) Associative Property.

 $\forall a, b, c \in G, (a * b) * c = a* (b*c).$

(iii) Existence of Identity.

There exists $e \in G$, such a * e = e *a = a.

(iv). Existence of Inverse.

```
For all a \in G, there exists a^{-1} \in G, such that a^* a^{-1} = a^{-1} * a = e.
```

Abelian Group.

A group (G, *) is said to be abelian group if the commutative property is also true.

 $a^* b = b^* a$ for all $a, b \in G$.

Example.

- **1.** Is (N , +) is a group.
 - (i) For all $a, b \in N$. a + b is also in N.

Thus Closure property is true. (ii). Associative. Clearly for all a, b, $c \in N$, (a+b)+c = a+(b+c)Thus Associative is true. (iii). Existence of Identity: $0 \notin N$. Additive identity 0 not in N. Thus (N, +) is not a group.

- 2. Example. (N, .) is a group? Verify. N = { 1, 2, 3,....} (N, .) is not a group.
- 3. Example. Is (W +), (W, .) a group? Verify. $W = \{0, 1, 2, ...\}$
- 4. Example. (Z, +) is a group or not.
 Z = {-4,-3,-2,-1,0,1,2,3,4,.....}
 Thus (Z, +) is group. Also it is an abelian group.

Example. Is (Z, .) a group? Verify. Closure, Associative, Identity is also true. Multiplicative inverse of Integers does not in Z Thus (Z, .) is not group.

6. Verify the following sets with binary operations are group or not.

 $(Q, +) (Q^*, .), (R, +), (R^*, .), (C, +),$ (C*, .) (Where $Q^* = Q - \{0\}, R^* = R - \{0\}$).

7. Example. Is (Z, -) a group?

(i). Closure is true.
(ii). Associative.
3 - {5-(-6)}= 3 - 11 = 8
(3-5) -(-6) = -2+6 = 4
Associative is not true.
(Z, -) is not a group.

8. Verify $G = \{ 1, -1, i, -i \}$ is a group under usual multiplication?

Proof. Cayley's table.

	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	Ι
i	Ι	-i	-1	1
-i	-i	Ι	1	-1

Hence (G, .) is a group.

9. The set of all 2 x2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where a, b, c, d are all real numbers is a group under matrix addition.

Example 10.

The set of all 2 x2 non-singular matrices is a group under multiplication.

Example. 11

Let G = {
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ }.

Prove that G is a group under matrix multiplication, Construct the Cayley's table for this group.

Proof.

Let G = { I, A, B, C}, where I =
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, A = $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, B = $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and C = $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
Now, IA = AI = A, IB = BI = B, IC = CI = C and II = I.
And, AB = $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = C.$
Similarly BA = $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = C$
Now, AC = $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = B$, and CA = B
Now, BC = $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = A$ and CB = A.
Also, AA = BB = CC = I = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Hence Cayley's table is

	Ι	Α	B	С
Ι	Ι	Α	B	С
Α	Α	Ι	С	B
В	B	С	Ι	Α
С	С	B	Α	Ι

From cayley's table, closure , associative is true.

Identity is I.

Inverse of I, A, B, C is itself.

Hence G = { $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ } is a group under matrix multiplication.

Example 12.

Let $G = \{ z \mid z \in C \text{ , and } | z | = 1 \}$. Then Prove that G is a group under usual multiplication.

Proof.

(i). Closure Property.

Let $z_1, z_2 \in G$.

Then $|z_1| = |z_2| = 1$

Therefore $|z_1z_2| = |z_1| |z_2| = 1.1 = 1.$

Hence $z_1z_2 \in G$.

Thus closure property is true.

(ii). Associative Property.

Clearly, $(z_1.z_2).z_3 = z_1.(z_2.z_3)$

We know that usual multiplication of complex numbers is associative.

(iii). Existence of Identity.

Now $1 = 1 + i0 \in G$ which is the identity element.

(iv). Existence of Inverse.

Let $z \in G$. Then |z| = 1.

Then $\left|\frac{1}{z}\right| = \frac{1}{|z|} = 1.$

Thus $\frac{1}{z} \in G$ and is the inverse of z.

Hence G is a group under usual multiplication.

Definition. Addition modulo n

Let $Z_n = \{ 0, 1, \dots, (n-1) \}.$

Let a , $b\in Z_n$.

Let a + b = qn + r, where $0 \le r \le n$.

Then addition modulo n is defined by $a \oplus b = r$.

Definition. <u>Multiplication modulo n</u>

Let $Z_n = \{ 0, 1, \dots, (n-1) \}.$

Let $a, b \in Z_n$.

Let a . b = q'n + s, where $0 \le s \le n$.

Then addition modulo n is defined by $a \bigcirc b = s$.

Example 13: Show that (212, \oplus) is a group.												
⊕ 12	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7	8	9	10	11
1	1	2	3	4	5	6	7	8	9	10	11	0
2	2	3	4	5	6	7	8	9	10	11	0	1
3	3	4	5	6	7	8	9	10	11	0	1	2
4	4	5	6	7	8	9	10	11	0	1	2	3
5	5	6	7	8	9	10	11	0	1	2	3	4
6	6	7	8	9	10	11	0	1	2	3	4	5

Example 13. Show that $(\mathbb{Z}_{12}, \oplus)$ is a group.

7	7	8	9	10	11	0	1	2	3	4	5	6
8	8	9	10	11	0	1	2	3	4	5	6	7
9	9	10	11	0	1	2	3	4	5	6	7	8
10	10	11	0	1	2	3	4	5	6	7	8	9
11	11	0	1	2	3	4	5	6	7	8	9	10

Thus (\mathbb{Z}_{12} , \oplus) is a group.

Example 14. Prove that (Z_n, \oplus) is a group.

Proof.

- (i). Clearly \oplus is a binary operation in Z_n .
- (ii). Let $a, b, c \in Z_n$.

Let $a + b = q_1 n + r_1 \dots (1)$

 $b+c = q_2 n + r_2....(2)$

 $r_1+c=q_3n+r_3....(3)$ where $0\leq r_1\leq n.$, $0\leq r_2\leq n,\,0\leq r_3\leq n.$

Now $(a+b)+c = (q_1+q_3)n + r_3$ (From (1) and (2)).

:. $a + q_2 n + r_2 = (q_1 + q_3)n + r_3$ (From (2))

$$\therefore$$
 a + r₂ = q₄n + r₃ (where q₄ = q₁+q₃ - q₂).

 $(a \oplus b) \oplus c = r_1 \oplus c = r_3 \text{ (from (3))}$

 $a \oplus (b \oplus c) = a \oplus r_2 = r_3$

Thus \oplus is associative.

Clearly the identity element is 0.

The inverse of $a \in \mathbb{Z}_n$ is n - a.

Hence (Z_n, \oplus) is a group.

This group is called group of integers modulo n.

Example 15.

If n is prime, then $Z_n - \{0\}$ is a group under multiplication modulo n.

Permutation Groups.

Definition.

Let A be any finite set. Then permutation of A is a bijection from A to A.

Definition.

Let A be a finite set consists of n elements. The set of all permutations of A is a group under the composition of functions. This group is called **Symmetric group** of degree n and is denoted by S_n .

Example.

Let A = $\{1,2,3\}$. Then S₃ = $\{e, p_1, p_2, p_3, p_4, p_5\}$

Where

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \ p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

Cayley's table.

0	e	p_1	p ₂	p ₃	p ₄	p ₅
Е	e	p_1	p ₂	p ₃	p ₄	p 5
p_1	p_1	p ₂	e	p 4	p 5	p ₃
p ₂	p ₂	e	p_1	p 5	p ₃	p ₄
p ₃	p ₃	p 5	p 4	e	p ₂	p_1
p ₄	p ₄	p ₃	p 5	p_1	e	p ₂
p 5	p 5	p ₄	p ₃	p ₂	p ₁	e

Then S_3 is a group under composition containing 3! elements.

Order of a Group.

If G is a finite group, then the number of elements in G is called order of G and it is denoted by o(G) or |G|.

Elementary Properties of Group.

- The identity element of group G is unique.
- For any $a \in G$, the inverse of a is unique.
- In a group the left and right cancellation laws hold. (i.e). ab = ac implies a = c and ba = ca implies b = c.
- Let G be a group and a, $b \in G$. Then the equations ax = b and ya = b have unique solutions for x and y in G.
- In a Group G, for any a, $b \in G$, $(ab)^{-1} = b^{-1} a^{-1}$ and $(a^{-1})^{-1} = a$.