ALGEBRA

Unit 1.

Preliminaries

Relation.

Let A and B be non-empty sets. A subset ρ of A x B is called a relation or binary relation from A to B. i.e. If an ordered pair $(a,b) \in \rho$, then we say that a is related to b and it is denoted by a ρ b.

Examples.

- 1. In **Z**, $a \rho b$ means $a \leq b$
- 2. In **Z**, $a \rho b$ means $a < b$
- 3. In \mathbb{Z} , $a \rho b$ means a divides b
- 4. In \mathbb{Z} , $a \rho b$ means ab is even
- 5. In \mathbb{Z} , $a \rho b$ means ab is perfect square. etc....

Equivalence Relation.

A relation ρ on a set A is said to be equivalence relation if

To Prove that ρ is an equivalence relation.

Proof.

 $a \equiv b \pmod{m}$ means a-b is multiple of m.

(i). Reflexive.

Clearly $a - a = 0$ which is multiple of m.

 $a \equiv a \pmod{m}$. apa. Hence reflexive is true.

(ii). Symmetric.

Let a ρ b. To prove that $b \rho a$.

Since apb, we have a -b is multiple of m.

Therefore, b-a is also multiple of m.

 $b \equiv a \pmod{m}$. Thus $b \rho a$.

(iii) Transitive.

Let a ρb , $\beta \rho c$ then we have to prove that

 $a \rho c$.

 $a \rho b$ implies a-b is multiple of m.

 $a - b = km$...(1)where k is an integer.

 $b \rho c$ implies $b - c$ is multiple of m.

i.e b-c = k_1 m…..(2), where k_1 is an integer.

Now, $a - c = km + b - c = km + k_1m = (k+k_1) m$

Therefore, $a - c = k_2$ m, where $k_2 = k + k_1$ is also an integer.

Hence $a - c$ is multiple of m.

i.e $a \equiv c \pmod{m}$

Hence a ρ c. Thus transitive is true.

Thus " \equiv " satisfies Reflexive, Symmetric and Transitive.

Hence \equiv is an equivalence relation.

PARTIAL ORDER RELATION.

A relation is ρ said to be a partial order relation if it satisfies the following three axioms.

 (i) . **Reflexive.** a pa

(ii). **Antisymmetric.**

If apb, bpa then $a = b$

(iii). **Transitive.**

i.e if apb and bpc then apc.

Then ρ is said to be partial order relation and the set (S, ρ) is called **partial ordered set.**

Example.

The set (N, \leq) is a partial ordered Set.

Proof.

(i). Reflexive.

Clearly $a \le a$ for all $a \in N$.

(ii). Anti Symmetric.

Let a \leq b, and b \leq a. We have to prove that

 $a = b$.

This is true only if $a = b$.

(iii). Transitive.

Let a≤b and b≤c.

Then $a \leq b \leq c$.

Therefore $a \leq c$.

Hence transitive is true.

Thus "≤" satisfies reflexive, antisymmetric and transitive.

Hence, " \leq " is partial order relation in N.

Thus (N, \leq) is a partial ordered set.

GROUP.

Definition.

Let G be any set. Let $*$ be binary operation defined in G. Then $(G, *)$ is said to be a group if the following conditions are true.

(i). Closure Property.

For all a, $b \in G$, $a^*b \in G$.

- (ii) Associative Property.
- \forall a, b, c \in G, $(a * b) * c = a * (b * c)$.
- (iii) Existence of Identity.

There exists $e \in G$, such $a * e = e * a = a$.

(iv). Existence of Inverse.

```
For all a \in G, there exists a^{-1} \in G, such that a * a^{-1} = a^{-1} * a = e.
```
Abelian Group.

A group (G, *) is said to be abelian group if the commutative property is also true.

 $a^* b = b^* a$ for all a, $b \in G$. **Example.** 1. **Is** $(N, +)$ is a group.

(i) For all $a, b \in N$. $a + b$ is also in N. Thus Closure property is true. (ii). Associative. Clearly for all a, b, $c \in N$, $(a+b)+c = a+(b+c)$ Thus Associative is true. (iii). Existence of Identity: $0 \notin N$. Additive identity 0 not in N.

Thus $(N, +)$ is not a group.

- **2. Example. (N, .) is a group? Verify.** $N = \{ 1, 2, 3, \ldots \}$ (N, .) is not a group.
- **3. Example.** Is $(W +)$, $(W, .)$ a group? Verify. $W = \{0, 1, 2, ...\}$
- **4. Example.** $(Z, +)$ is a group or not. $Z = \{$ …. -4, -3, -2, -1, 0, 1, 2, 3, 4, ……} Thus $(Z, +)$ is group. Also it is an abelian group.

5. Example. Is (Z , .) a group? Verify. Closure , Associative, Identity is also true. Multiplicative inverse of Integers does not in Z Thus $(Z, .)$ is not group.

6. Verify the following sets with binary operations are group or not.

 $(Q, +) (Q^*, ...)$, $(R, +)$, $(R^*, .)$, $(C, +)$, $(C^*,.)$ (Where $Q^* = Q - \{0\}$, $R^* = R - \{0\}$).

7. Example. Is (Z, -) a group?

(i). Closure is true. (ii). Associative. $3 - \{5 - (-6)\} = 3 - 11 = 8$ $(3-5)$ $-(-6) = -2+6 = 4$ Associative is not true. $(Z, -)$ is not a group.

8. Verify $G = \{ 1, -1, i, -i \}$ is a group under usual multiplication?

Proof. Cayley's table.

Hence $(G, .)$ is a group.

9. The set of all 2 x2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where a, b, c, d are all real numbers is a group under matrix addition.

Example 10.

The set of all 2 x2 non-singular matrices is a group under multiplication.

Example. 11

$$
\text{Let } G = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \}.
$$

Prove that G is a group under matrix multiplication, Construct the Cayley's table for this group.

Proof.

Let G = { I, A, B, C}, where I =
$$
\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}
$$
, A = $\begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix}$, B = $\begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$, and C = $\begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}$
\nNow, IA = AI = A, IB = BI = B, IC = CI = C and I I = I.
\nAnd, AB = $\begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix} = C$.
\nSimilarly BA = $\begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix} = C$
\nNow, AC = $\begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} = B$, and CA = B
\nNow, BC = $\begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix} = A$ and CB = A.
\nAlso, AA = BB = CC = I = $\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$

Hence Cayley's table is

From cayley's table, closure , associative is true.

Identity is I.

Inverse of I, A, B, C is itself.

Hence G = { $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$ $\left(\begin{matrix} 1 & 0 \ 0 & -1 \end{matrix}\right)\left(\begin{matrix} -1 & 0 \ 0 & -1 \end{matrix}\right)$ $\begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix}$ is a group under matrix multiplication.

Example 12.

Let $G = \{ z / z \in C$, and $|z| = 1 \}$. Then Prove that G is a group under usual **multiplication.**

Proof.

(i). Closure Property.

Let z_1 , $z_2 \in G$.

Then $|z_1| = |z_2| = 1$

Therefore $|z_1z_2| = |z_1| |z_2| = 1.1 = 1.$

Hence $z_1z_2 \in G$.

Thus closure property is true.

(ii). Associative Property.

Clearly, $(z_1.z_2).z_3 = z_1.(z_2.z_3)$

We know that usual multiplication of complex numbers is associative.

(iii). Existence of Identity.

Now $1 = 1 + i0 \in G$ which is the identity element.

(iv). Existence of Inverse.

Let $z \in G$. Then $|z| = 1$.

Then $\left| \frac{1}{2} \right|$ $\left| \frac{1}{z} \right| = \frac{1}{|z|}$ $\frac{1}{|z|} = 1.$

Thus $\frac{1}{z} \in G$ and is the inverse of z.

Hence G is a group under usual multiplication.

Definition. Addition modulo n

Let $Z_n = \{ 0,1, \ldots (n-1) \}.$

Let $a, b \in Z_n$.

Let $a + b = qn + r$, where $0 \le r \le n$.

Then addition modulo n is defined by $a \oplus b = r$.

Definition. Multiplication modulo n

Let $Z_n = \{ 0,1, \ldots (n-1) \}.$

Let a, $b \in Z_n$.

Let a \cdot b = q'n + s, where $0 \le s \le n$.

Then addition modulo n is defined by $a \circ b = s$.

Example 10. Show that $(212, 90)$ is a group.	$\boldsymbol{0}$		2	3	4		6		8	9	10	11
\bigoplus_{12}						\mathbf{z}						
$\boldsymbol{0}$	$\boldsymbol{0}$		$\overline{2}$	3	4	5	6	7	8	9	10	11
		2	3	4	5	6	7	8	9	10	11	
$\boldsymbol{2}$	2	3	4	5	6		8	9	10	11	0	
3	3	4	5	6		8	9	10		0		
4	4	5	6		8	9	10	11	$\boldsymbol{0}$		2	3
5	5	6	7	8	9	10	11	0	1	2	3	
6	6	7	8	9	10		0		2	3	4	5

Example 13. Show that (Z_{12}, \oplus) **is a group.**

Thus $(\mathbb{Z}_{12}, \oplus)$ is a group.

Example 14. Prove that (\mathbb{Z}_n **,** \oplus **) is a group.**

Proof.

- (i). Clearly \oplus is a binary operation in Z_n .
- (ii). Let $a, b, c \in Z_n$.

Let $a + b = q_1 n + r_1$ ……...(1)

 $b+c = q_2 n + r_2 \dots (2)$

r1+c = q3n + r3…………..(3) where 0 ≤ r¹ ≤ n. , 0 ≤ r² ≤ n, 0 ≤ r³ ≤ n.

Now $(a+b) +c = (q_1+q_3)n + r_3$ (From (1) and (2)).

 \therefore a + q₂ n+ r₂ = (q₁+q₃)n + r₃ (From (2))

$$
\therefore \quad a + r_2 = q_4 n + r_3 \text{ (where } q_4 = q_1 + q_3 - q_2).
$$

 $(a \oplus b) \oplus c = r_1 \oplus c = r_3$ (from (3))

 $a \oplus (b \oplus c) = a \oplus r_2 = r_3$

Thus \oplus is associative.

Clearly the identity element is 0.

The inverse of $a \in Z_n$ is $n - a$.

Hence (\mathbb{Z}_n, \oplus) is a group.

This group is called group of integers modulo n.

Example 15.

If n is prime, then $Z_n - \{0\}$ is a group under multiplication modulo n.

Permutation Groups.

Definition.

Let A be any finite set. Then permutation of A is a bijection from A to A.

Definition.

Let A be a finite set consists of n elements. The set of all permutations of A is a group under the composition of functions. This group is called **Symmetric group** of degree n and is denoted by **Sⁿ**.

Example.

Let A = {1,2,3}. Then S_3 = { e, p₁, p₂, p₃, p₄, p₅}

Where

$$
e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},
$$

$$
p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.
$$

Cayley's table.

Then S_3 is a group under composition containing 3! elements.

Order of a Group.

If G is a finite group, then the number of elements in G is called order of G and it is denoted by $o(G)$ or $|G|$.

Elementary Properties of Group.

- The identity element of group G is unique.
- For any $a \in G$, the inverse of a is unique.
- In a group the left and right cancellation laws hold. (i.e). $ab = ac$ implies $a = c$ and $ba = ca$ implies $b = c$.
- Let G be a group and a, $b \in G$. Then the equations $ax = b$ and $ya = b$ have unique solutions for x and y in G.
- In a Group G, for any a, $b \in G$, $(ab)^{-1} = b^{-1} a^{-1}$ and $(a^{-1})^{-1} = a$.