ALGEBRA
Unit 1.
Preliminaries
Relation.

Let A and B be non-empty sets. A subset p of A x B is called a relation or binary relation
from A to B. i.e. If an ordered pair (a,b) € p, then we say that a is related to b and it is
denoted by a p b.

Examples.

InZ, apb meansa<b

InZ, apb meansa<b

InZ, apb meansadividesb

InZ, apb meansabiseven

InZ, apb means ab is perfect square. etc....

arownE

Equivalence Relation.

A relation p on a set A is said to be equivalence relation if

Q) Reflexive. apa.

(i) Symmetric. If apb then bpa.

(iii) Transitive. If apb, bpc then apc.
Ex.

Let S=Z. apb means a=b (mod m).
To Prove that p is an equivalence relation.

Proof.

a=b (mod m) means a-b is multiple of m.
(1). Reflexive.

Clearly a - a = 0 which is multiple of m.
a=a (mod m). apa. Hence reflexive is true.
(if). Symmetric.

Letapb. To prove that b p a.

Since apb, we have a -b is multiple of m.
Therefore, b-a is also multiple of m.
b=a(modm). Thusbp a.

(iii) Transitive.



Let a pb, b p ¢ then we have to prove that

apc.

a p b implies a-b is multiple of m.

a—b=km ...(1)where k is an integer.

b p c implies b — ¢ is multiple of m.

i.e b-c = kim.....(2), where ki is an integer.

Now, a -c = km +b -c = km + kim = (k+k1) m

Therefore, a— ¢ = ko m, where ko = k+ky is also an integer.
Hence a — ¢ is multiple of m.

i.e a=c(modm)

Hence a p c. Thus transitive is true.

Thus “=“ satisfies Reflexive, Symmetric and Transitive.
Hence = is an equivalence relation.

PARTIAL ORDER RELATION.

A relation is p said to be a partial order relation if it satisfies the following three
axioms.

(i). Reflexive. a pa

(it). Antisymmetric.

If apb, bpathena=Db

(iii). Transitive.

i.e if apb and bpc then apc.

Then p is said to be partial order relation and the set ( S, p) is called partial ordered set.
Example.

The set (N, <) is a partial ordered Set.
Proof.

(). Reflexive.

Clearly a<a forall a eN.

(ii). Anti Symmetric.

Let a<b, and b< a. We have to prove that

a=bh.



This is true only if a=b.

(iii). Transitive.

Let a<b and b=c.
Thena<b<c.
Therefore a <c.
Hence transitive is true.
Thus “<” satisfies reflexive, antisymmetric and transitive.
Hence, “ <* is partial order relation in N.
Thus (N, <) is a partial ordered set.
GROUP.
Definition.

Let G be any set. Let * be binary operation defined in G. Then (G, *) is said to be a group if
the following conditions are true.

(1). Closure Property.
Foralla,b e G, a*b € G.
(if) Associative Property.
Vv a, b, c e G, (a*b)*c=a* (b*c).
(iii) Existence of Identity.
There existse € G,sucha*e=e*a=a.
(iv). Existence of Inverse.
For all acG, there existsa! eG, suchthata*al=al*a=e.
Abelian Group.
A group ( G, *) is said to be abelian group if the commutative property is also true.

a*b=Db*aforalla, b eG.

Example.
1. Is(N, +)isagroup.
(1 Foralla,b € N. a+bisalsoin N.

Thus Closure property is true.
(i1). Associative.
Clearly foralla,b,c e N,
(at+b)+c = a+(b+c)
Thus Associative is true.
(iii). Existence of Identity: 0 ¢N.
Additive identity 0 not in N.



Thus (N, +) is not a group.

2. Example. (N, .) is a group? Verify.
N={1,23,...}
(N, .) is not a group.
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Example. Is (W +), (W, .) a group? Verify. W=1{0,1, 2,....}
4. Example. (Z, +) is a group or not.
Z=1{..-4,-3-2,-1,0,1,234,...... }

Thus ( Z, +) is group. Also it is an abelian group.

5. Example. Is(Z,.) agroup? Verify.
Closure , Associative, Identity is also true.
Multiplicative inverse of Integers does not in Z
Thus ( Z, .) is not group.

6. Verify the following sets with binary operations are group or not.
Q H@Q*,), (R +), (R*.), (C+),
(C*.))

(Where Q* = Q — {0}, R* =R —{0}).
7. Example. Is(Z,- )agroup?

(1). Closure is true.
(it). Associative.
3-{5-(-6)}=3-11=38
(3-5) -(-6)=-2+6=4
Associative is not true.
(Z,-)isnotagroup.

8. Verify G ={ 1, -1, i, -i} is a group under usual multiplication?

Proof. Cayley’s table.

HEEENINE
1 (1 [-1]i |-
1]-101 |-

-1 1
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Hence (G, .) isa group.

9. The setof all 2 x2 matrices(‘cl Z) where a, b, c, d are all real numbers is a group
under matrix addition.

Example 10.

The set of all 2 x2 non-singular matrices is a group under multiplication.



Example. 11

_«1 0y (=1 O0/1 O0\/—1 O
Lete=i(p 1).(5 1) —)G S
Prove that G is a group under matrix multiplication, Construct the Cayley’s table for this
group.
Proof.

LetG={I,A,B,C},WhereI=((1) 2),A:(_01 (1’),3:((1) _01),andC:(_1 0

Now, IA=AlI=A,IB=BI=B,IC=Cl=Cand11=1.

5= 0 0= (3 )
smenon=( )3 D=( %)=c

Nnow,Ac= (30 D) (G 2)=(; 2)=B.andca=B
Now,Bc= (3 °) (T 2)=(3 Y)=AamdcB=A

AIso,AA:BB:CC:I:((l) 2)

Hence Cayley’s table is

|l |A|B|C
I [I |A|B|C
AlA[l |IC|B
BIBIC|I |A
CIC|B|A]|I

From cayley’s table, closure , associative is true.
Identity is I.

Inverse of I, A, B, C is itself.

Hence G :{(1 (1)) (_01 (1)) ((1) _01) (_01 _01)} is a group under matrix multiplication.

Example 12.

Let G={z/zeC,and|z|=1}. Then Prove that G is a group under usual
multiplication.

Proof.
(i). Closure Property.
Let z1, 22eG.

Then|zi|=|z|=1



Therefore | z1z2| = |z1] |22 = 1.1 = 1.

Hence z12,€G.

Thus closure property is true.

(i1). Associative Property.

Clearly, (z1.22).z3 = 71.(22.23)

We know that usual multiplication of complex numbers is associative.
(iii). Existence of Identity.

Now 1 =1 +i0 €G which is the identity element.

(iv). Existence of Inverse.

Letze G. Then|z|=1.
Then |3| =11
z |z|
Thus§ e G and is the inverse of z.

Hence G is a group under usual multiplication.
Definition. Addition modulo n

Let Zo={0,1,.......(n-1)}.

Leta,b e Zn.

Leta+b =qn+r, where 0 <r<n.

Then addition modulo n is defined by a®b=r.
Definition. Multiplication modulo n

Let Zn={O,1,.......(n-1)}.

Leta, b e Z,.

Leta.b = q'n+s, where 0 <s<n.
Then addition modulo n is defined by a © b=s.

Example 13. Show that ( Z12, @) is a group.

@320 |1 |2 |3 |4 |5 |6 |7 8 |9 |10(11
0 0 |1 ]2 |3 |4 |5 |6 |7 |8 ]9 |10]11
1 1 12 |3 |4 |5 |6 |7 |8 ]9 |10j11]0
2 2 |3 |4 |5 |6 |7 |8 ]9 |10]11]0 |1
3 3 |4 |5 |6 |7 (8 |9 |10j11/0 |1 |2
4 4 |5 |6 |7 |8 |9 |10j11]|0 |1 |2 |3
5 5 |6 |7 |8 |9 |[10]11)0 |1 |2 |3 |4
6 6 |7 |8 |9 |10/11]0 |1 |2 |3 [4 |5
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Thus ( Za2, @) is a group.
Example 14. Prove that ( Zn, @) is a group.
Proof.
(1). Clearly @ is a binary operation in Zn.
(ii). Leta, b, c € Zn.
Leta+b=qin+r........ 1)
b+c=q2n+ro............ 2
MAC=0an +r3.....c........ (B where 0<r1<n.,0<r2<n,0<r3<n.
Now (a+b) +c = (git+gs)n +r3 ( From (1) and (2)).
a+gen+r2 = (qutgs)n +r3 (From (2))
a+r2=0qsn +r3 (where gs = q1+qs — Q2).
(@®b)@®c=r1 @c=rs(from(3))
a@bec)=a dra=r3
Thus @ is associative.
Clearly the identity element is 0.
The inverse of a eZnisn—a.
Hence (Zn, ®) is a group.
This group is called group of integers modulo n.
Example 15.
If nis prime, then Z, — {0} is a group under multiplication modulo n.

Permutation Groups.

Definition.

Let A be any finite set. Then permutation of A is a bijection from A to A.



Definition.

Let A be a finite set consists of n elements. The set of all permutations of A is a group under
the composition of functions. This group is called Symmetric group of degree n and is
denoted by Sn.

Example.
Let A ={1,2,3}. Then Sz = { e, p1, P2, P3, P4, Ps}
Where

(2 Yn=C 2 Ym=C Y=L 2

n=(3 3 )= 1 3)

Cayley’s table.

° | € | Pr|P2|P3|Pa|ps
Ele [pi|p2|ps|Ppsa|ps
Pr|P1|pP2]€ | Psa]|P5]|P3
P2 | pP2|€ | P1|Ps|P3|Pa
P3| P3|[Ps|Ps|€ | P2]P1
Pa| PajP3|Ps|pP1|€ | P2
Ps | Ps | Pa| P3| P2|p1|€
Then Sz is a group under composition containing 3! elements.

Order of a Group.

If G is a finite group, then the number of elements in G is called order of G and it is denoted
by o(G) or| G |.

Elementary Properties of Group.

e The identity element of group G is unique.
e Forany a €G, the inverse of a is unique.
e Inagroup the left and right cancellation laws hold.
(i.e). ab = ac implies a = c and ba = ca implies b = c.
e LetGbeagroupanda, b € G. Then the equations ax = b and ya = b have unique
solutions for x and y in G.
e InaGroupG, foranya,b eG, (ab)*=btatand (al)!=a.



