
 

ALGEBRA 

Unit 1. 

Preliminaries 

Relation. 

 Let A and B be non-empty sets. A subset   of A x B is called a relation or binary relation 

from A to B. i.e. If an ordered pair (a,b)   , then we say that a is related to b and it is 

denoted by a   b. 

Examples. 

1. In Z,   a  b  means a ≤ b 

2. In Z,   a  b  means a b 

3. In Z,   a  b  means a divides b 

4. In Z,   a  b  means ab is even 

5. In Z,   a  b  means ab is perfect square. etc…. 

Equivalence Relation.  

A relation  on a set A is said to be equivalence relation if  

(i) Reflexive.  aa. 

(ii) Symmetric. If ab then ba. 

(iii) Transitive.  If ab, bc then ac. 

Ex.  

Let S = Z.  ab means ab (mod m). 

To Prove that  is an equivalence relation. 

Proof.  

ab (mod m)  means a-b is multiple of m. 

(i). Reflexive.  

Clearly a - a = 0 which is multiple of m. 

a  a (mod m). aa. Hence reflexive is true. 

(ii). Symmetric. 

Let a  b. To prove that b  a.  

Since ab, we have a -b is multiple of m. 

Therefore, b-a is also multiple of m. 

b  a (mod m) . Thus b  a. 

(iii) Transitive. 



Let a b, b  c then we have to prove that 

 a  c. 

a  b implies a-b is multiple of m.  

a – b = km …(1)where k is an integer. 

b  c implies b – c is multiple of m. 

i.e b-c = k1m…..(2), where k1 is an integer. 

 Now, a -c = km +b -c = km + k1m = (k+k1) m 

Therefore, a – c = k2 m, where k2 = k+k1 is also an integer. 

Hence a – c is multiple of m. 

i.e  a  c (mod m) 

Hence a  c. Thus transitive is true. 

Thus  “  “ satisfies Reflexive, Symmetric and Transitive. 

Hence  is an equivalence relation. 

PARTIAL ORDER RELATION. 

A relation is   said to be a partial order relation if it  satisfies the following three 

axioms. 

(i). Reflexive. a a 

(ii). Antisymmetric.  

If ab, ba then a = b 

(iii). Transitive.  

i.e if ab and bc then ac.  

Then  is said to be partial order relation and the set ( S, ) is called partial ordered set. 

Example.  

The set (N,  ≤ ) is a partial ordered Set. 

Proof.  

(i). Reflexive.   

Clearly a ≤ a for all a N. 

(ii). Anti Symmetric.  

Let a≤b, and b≤ a. We have to prove that  

a = b. 



This is true only if a = b. 

(iii). Transitive.  

Let a≤b and b≤c.  

Then a ≤ b ≤ c.  

Therefore a ≤ c. 

Hence transitive is true. 

Thus “≤” satisfies reflexive, antisymmetric and transitive. 

Hence, “ ≤ “  is partial order relation in N. 

Thus (N, ≤) is a partial ordered set. 

GROUP. 

Definition. 

Let G be any set.  Let * be binary operation defined in G. Then (G , *) is said to be a group if 

the following conditions are true. 

(i). Closure Property. 

         For all a, b  G, a*b  G. 

(ii)  Associative Property. 

  a, b, c  G, (a *b) *c = a* (b*c). 

(iii) Existence of Identity. 

  There exists e  G, such a * e = e *a = a. 

(iv). Existence of Inverse. 

For all aG, there exists a-1 G , such that a * a-1 = a-1 * a = e. 

Abelian Group. 

A group ( G, *) is said to be abelian group if the commutative property is also true. 

a* b = b *a for all a, b G. 

Example.  

1.  Is ( N , +) is a group. 

(i) For all a, b  N.  a + b is also in N. 

Thus Closure property is true. 

(ii). Associative. 

Clearly for all a, b, c  N ,  

(a+b)+c = a+(b+c) 

Thus Associative is true. 

(iii). Existence of Identity:  0 N. 

Additive identity 0 not in N. 



Thus (N, + ) is not a group. 

 

2. Example. ( N, .) is a group? Verify. 

N = { 1, 2, 3,…..} 

( N, .) is not a group. 

 

3.  Example.  Is (W +) , ( W, .) a group? Verify. W = { 0, 1, 2,….} 

4.  Example. ( Z, +) is a group or not. 

Z = { ….-4,-3,-2,-1,0,1,2,3,4,……} 

Thus ( Z, +) is group. Also it is an abelian group. 

 

5. Example. Is ( Z , .) a group? Verify. 

Closure , Associative, Identity is also true.  

Multiplicative inverse of Integers does not in Z 

Thus ( Z, .) is not group. 

 

6. Verify the following sets with binary operations are group or not. 

(Q, +) (Q* ,.) , (R, +), (R*, .), (C ,+),  

( C* , .)  

  (Where Q* = Q – {0}, R* = R –{0}). 

        7. Example.   Is ( Z, - ) a group?  

(i). Closure is true. 

(ii). Associative. 

3 – {5-(-6)}= 3 – 11 = 8 

(3-5) -(-6) = -2+6 = 4 

Associative is not true. 

( Z , -) is not a group. 

       8. Verify G = { 1, -1, i, -i} is a group under usual multiplication? 

Proof. Cayley’s table. 

 

. 1 -1 i -i 

1 1 -1 i -i 

-1 -1 1 -i I 

i I -i -1 1 

-i -i I 1 -1 

       

Hence (G , .) is a group. 

 

      9.  The set of all 2 x2 matrices(
𝑎 𝑏
𝑐 𝑑

), where a, b, c, d are all real numbers is a group 

under matrix addition. 

Example 10.  

The set of all 2 x2 non-singular matrices is a group under multiplication. 



Example. 11 

Let G = {(
1 0
0 1

) , (
−1 0
0 1

) (
1 0
0 −1

) (
−1 0
0 −1

)}. 

Prove that G is a group under matrix multiplication, Construct the Cayley’s table for this 

group. 

Proof. 

Let G = { I, A , B, C}, where I = (
1 0
0 1

),  A = (
−1 0
0 1

),  B = (
1 0
0 −1

), and C = (
−1 0
0 −1

) 

Now, IA = AI = A , IB = BI = B , IC = CI = C and I I = I. 

And, AB = (
−1 0
0 1

) (
1 0
0 −1

) =  (
−1 0
0 −1

) = C. 

Similarly BA = (
1 0
0 −1

) (
−1 0
0 1

) = (
−1 0
0 −1

) = C 

Now, AC = (
−1 0
0 1

) (
−1 0
0 −1

)=(
1 0
0 −1

) = B, and CA = B 

Now, BC = (
1 0
0 −1

) (
−1 0
0 −1

) = (
−1 0
0 1

) = A and CB = A. 

Also, AA = BB = CC = I = (
1 0
0 1

) 

Hence Cayley’s table is 

. I A B C 

I I A B C 

A A I C B 

B B C I A 

C C B A I 

From cayley’s table, closure , associative is true. 

Identity is I. 

Inverse of I, A, B, C is itself. 

Hence G ={(
1 0
1 1

) , (
−1 0
0 1

) (
1 0
0 −1

) (
−1 0
0 −1

)} is a group under matrix multiplication. 

Example 12.  

Let G = { z / zC , and  z  = 1}.  Then Prove that G is a group under usual 

multiplication. 

Proof. 

(i). Closure Property. 

Let z1, z2G.  

Then  z1 =  z2  = 1 



Therefore  z1z2 = z1 z2 = 1.1 = 1. 

Hence z1z2G. 

Thus closure property is true. 

(ii). Associative Property. 

Clearly, (z1.z2).z3 = z1.(z2.z3) 

We know that usual multiplication of complex numbers is associative. 

(iii). Existence of Identity. 

Now 1 = 1 + i0 G which is the identity element. 

(iv). Existence of Inverse. 

Let z  G.  Then  z  = 1. 

Then |
1

𝑧
| = 

1

|𝑧|
 = 1. 

Thus 
1

𝑧
  G and is the inverse of z. 

Hence G is a group under usual multiplication. 

Definition. Addition modulo n  

Let Zn = { 0,1,……..(n-1)}. 

Let a , b  Zn . 

Let a + b  = qn + r, where 0 ≤ r ≤ n. 

Then addition modulo n is defined  by  a  b = r. 

Definition. Multiplication modulo n 

Let Zn = { 0,1,……..(n-1)}.   

Let a,  b  Zn . 

Let a . b  =  q’n + s, where 0 ≤ s ≤ n. 

Then addition modulo n is defined  by  a  A  b = s. 

Example 13. Show that ( Z12 , ) is a group. 

12 0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 2 3 4 5 6 7 8 9 10 11 0 

2 2 3 4 5 6 7 8 9 10 11 0 1 

3 3 4 5 6 7 8 9 10 11 0 1 2 

4 4 5 6 7 8 9 10 11 0 1 2 3 

5 5 6 7 8 9 10 11 0 1 2 3 4 

6 6 7 8 9 10 11 0 1 2 3 4 5 



7 7 8 9 10 11 0 1 2 3 4 5 6 

8 8 9 10 11 0 1 2 3 4 5 6 7 

9 9 10 11 0 1 2 3 4 5 6 7 8 

10 10 11 0 1 2 3 4 5 6 7 8 9 

11 11 0 1 2 3 4 5 6 7 8 9 10 

 

Thus ( Z12 , ) is a group. 

Example 14. Prove that ( Zn , ) is a group. 

Proof. 

(i). Clearly  is a binary operation in Zn. 

(ii).  Let a , b, c  Zn. 

Let a +b= q1n + r1……..(1) 

 b+c = q2 n+ r2…………(2) 

r1+c = q3n + r3…………..(3) where 0 ≤ r1 ≤ n. , 0 ≤ r2 ≤ n, 0 ≤ r3 ≤ n. 

Now ( a+b) +c      =  (q1+q3)n + r3  ( From (1) and (2)). 

     a + q2 n+ r2   =  (q1+q3)n + r3  (From (2)) 

    a + r2 = q4n + r3  (where q4 = q1+q3 – q2). 

(a b)  c = r1   c = r3 (from (3)) 

a   (b c) = a   r2 = r3 

Thus   is associative. 

Clearly the identity element is 0. 

The inverse of a Zn is n – a. 

 Hence (Zn, ) is a group. 

This group is called group of integers modulo n. 

Example 15. 

If n is prime, then Zn – {0} is a group under multiplication modulo n. 

Permutation Groups. 

Definition.  

Let A be any finite set. Then permutation of A is a bijection from A to A. 

 

 

 



Definition. 

Let A be a finite set consists of n elements. The set of all permutations of A is a group under 

the composition of functions.  This group is called Symmetric group  of degree n and is 

denoted by Sn. 

Example. 

Let A = {1,2,3}. Then S3 = { e, p1, p2, p3, p4, p5} 

Where 

 𝑒 = (
1 2 3
1 2 3

) , 𝑝1 = (
1 2 3
2 3 1

) , 𝑝2 = (
1 2 3
3 1 2

) , 𝑝3 = (
1 2 3
1 3 2

),     

 

 𝑝4 = (
1 2 3
3 2 1

) , 𝑝5 = (
1 2 3
2 1 3

). 

Cayley’s table. 

 e p1 p2 p3 p4 p5 

E e p1 p2 p3 p4 p5 

p1 p1 p2 e p4 p5 p3 

p2 p2 e p1 p5 p3 p4 

p3 p3 p5 p4 e p2 p1 

p4 p4 p3 p5 p1 e p2 

p5 p5 p4 p3 p2 p1 e 

Then S3 is a group under composition containing 3! elements. 

Order of a Group. 

If G is a finite group, then the number of elements in G is called order of G and it is denoted 

by o(G) or  G . 

Elementary Properties of Group. 

• The identity element of group G is unique. 

• For any a G, the inverse of a is unique. 

• In a group the left and right cancellation laws hold.  

  (i.e). ab = ac implies a = c and ba = ca implies b = c. 

• Let G be a group and a, b   G.  Then the equations ax = b and ya = b have unique 

solutions for x and y in G. 

• In a Group G,  for any a , b G, (ab)-1 = b-1 a-1 and (a-1)-1 = a. 

 


