IMPORTANT DEFINITIONS AND EXAMPLES

Definition

A subset H of a group G is called a **subgroup** of G if H forms a group with respect to the binary operation in G.

Example.1

Let G be any group.

Then $\{e\}$ and G are subgroups of G and this subgroups are called **Improper subgroups** of G.

Example.2

(Q, +) is a subgroup of (R, +) and (R, +) is a subgroup of (C, +).

Example.3

$$\{1, -1, i, -i\}$$
 is a subgroup of $(C^*, .)$.

Example.4

In (Z_8, \oplus) $H_1 = \{0, 4\}$ and $H_2 = \{0, 2, 4, 6\}$ are subgroups of (Z_8, \oplus) .

Let G be a group.

Then the subgroup $H = \{a/a \in Gandax = xaforallx \in G\}$ is called the **centre of** G and is denoted by Z(G).

Definition

Let G be a group and let a be a fixed element of G.

Then the subgroup $H_a = \{x \mid x \in Gandax = xa\}$ is called the

Normaliser of a in G.

Let G be a group.

Let $a \in G$. Then the subgroup $H = \{a^n/n \in Z\}$ is called the **cyclic subgroup of** G **generated by** a and is denoted by $a \in Z$.

Definition

A group G is **cyclic** if there exists a an element $a \in G$ such that $G = \langle a \rangle$.

Example.5

In (Z,+), < 2 >= 2Z is a cyclic subgroup of Z.

Example.6

The group $G = \{1, -1, i, -i\}$ is cyclic group generated by < i > and < -i >.

Example.7

 (Z_8, \oplus) is a cyclic group generated by 1,2,5 and 7.

Example.8

(nZ, +) is a cyclic group generated by n and -n.

Example.9

The group $G = \{1, \omega, \omega^2\}$ is a cyclic group generated by ω and ω^2 .

Example.10

(R,+) is not a cyclic group, since for any $x \in R, \langle x \rangle = \{nx/n \in Z\} \neq R.$

Let G be a group. Let $a \in G$. Then **Order of a O(a)** is the least positive integer n (if it exists) such that $a^n = e$.

If there is no positive integer n such that $a^n = e$ then O(a) is infinite.

Example.11

In any group G, e is the only element of order 1.

Example.12

In the group $G\{1,-1,i,-i\}$, o(1)=1, o(-1) = 2, o(i)=4, o(-i)=4.

Example.13

In (Z_8, \oplus) o(2)=4 and o(3)=8.

Let H be a subgroup of G.

Let $a \in G$.

Then the set $aH = \{ah/h \in H\}$ is called the **Left Coset of** H **defined by** a **in** G

Similarly, $Ha = \{ha/h \in H\}$ is called **Right Coset of** H **defined** by a in G

Example.14

Let
$$G = (Z_{12}, \oplus)$$
.

Then $H = \{0, 4, 8\}$ is a subgroup of G.

The left cosets of H are

$$0 + H = \{0, 4, 8\} = H$$

$$1 + H = \{1, 5, 9\}$$

$$2 + H = \{2, 6, 10\}$$

$$3 + H = \{3, 7, 8\}$$

Note that $4 + H = \{0, 4, 8\} = H$ and $5 + H = \{5, 9, 1\} = 1 + H$ etc..

Let H be a subgroup of G. Then the number of distinct left(right) cosets of H in G is called the **Index of** H **in** G and is denoted by [G:H]

Example.15

Let
$$G = (Z_8, \oplus)$$
.

Then $H = \{0, 4, \}$ is a subgroup of G.

The left cosets of H are

$$0 + H = \{0, 4\} = H$$

$$1 + H = \{1, 5\}$$

$$2 + H = \{2, 6\}$$

$$3 + H = \{3, 7\}$$

There are four distinct left cosets of H in G.

Thus
$$[G : H] = 4$$

Important Theorems

Theorem.1

Let H be a subgroup of G. Then

- (i) The identity element of H is same as that of G.
- (ii). For each $a \in H$ the inverse of a in H is same as the inverse of a in G.

Proof.

(i). Let e and e' be the identities of G and H respectively.

Let $a \in H$. Then, e'a = a(since e' is the identity of H).

Now, $a = ea(\text{since } e \text{ is the identity of } G \text{ and } a \in G)$.

Therefore e'a = ea

Thus e' = e (By right cancellation law). Hence (i).

(ii). Let a' be the inverse of a in G.

Let a'' be the inverse of a in H.

Then a.a' = e = a.a''.

Hence by Cancellation law, we have a'=a". Hence (ii).

A subset H of a group G is a subgroup of G iff

- (i). it is closed under the binary operation in G.
- (ii). The identity e of G is in H.
- (iii). $a \in H \Rightarrow a^{-1} \in H$.

Proof.

Let H be a subgroup of G. Then By theorem 1, we have (i),(ii) and (iii).

Conversely let H be a subset of G satisfying conditions (i), (ii) and (iii).

Then, clearly H itself a group under the same binary operation in G.

Hence H is a subgroup of G.

A non-empty subset H of a group G is a subgroup of G if and only if $a, b \in H \Rightarrow ab^{-1} \in H$.

Proof.

Let H be a subgroup of G.

Let $a, b \in H$.

Since *H* is subgroup, $b \in H \Rightarrow b^{-1} \in H$

Thus $a, b^{-1} \in H \Rightarrow ab^{-1} \in H$ (by Closure law).

Conversely, Let H be a non empty subset of G such that

 $a,b \in H \Rightarrow ab^{-1} \in H.....(1)$

We have to prove that H is a subgroup of G.

Since H is non-empty, there exists an element $a \in H$.

Hence $aa^{-1} \in H$ (by (1).

Thus $e \in H$.

Now $e, a \in H \Rightarrow ea^{-1} \in H \Rightarrow a^{-1} \in H$.

Let $a, b \in H$.

Then $a, b^{-1} \in H$.

By (1), $a(b^{-1})^{-1} \in H$.

i.e $ab \in H$. Hence H is closed under the binary operation in G.

Thus By Theorem 2, H is a subgroup of G.

Let H be a non-empty finite subset of G.

If H is closed under the binary operation in G then H is subgroup of G.

Proof.

Let $a \in H$. Since H is closed and finite, $a, a^2, a^3,a^n,$ are all elements of H

and cannot all be distinct.

Let
$$a^r = a^s, r < s$$
.

Then
$$a^{s-r} = e \in H$$
.

Let
$$a \in H$$
.

We have proved for some $n, a^n = e$.

Hence
$$aa^{n-1} = e$$
.

Thus
$$a^{-1} = a^{n-1}$$
.

Hence H is a subgroup of G.

Remark.

The converse of above theorem is not true if H is finite.

Proof.

We know that N is subset of (Z, +).

Also N is closed under addition.

But *N* is not a subgroup of (Z, +).

Theorem.5

The intersection of any two subgroups of group G is also a subgroup of G.

Proof.

Let H and G be two subgroups of G.

Then $e \in H$ and $e \in K$. Thus $e \in H \cap K$.

Hence $H \cap K$ is non-empty subset of G.

Now, let $a, b \in H \cap K$. Then $a, b \in H$ and $a, b \in K$.

Since H and K are subgroups of G, $ab^{-1} \in H$ and $ab^{-1} \in K$.

Thus $ab^{-1} \in H \cap K$.

Hence $H \cap K$ is subgroup of G.

The union of two subgroups of group G is a subgroup if and only if one is contained the other.

Proof.

Let H and G be two subgroups of G such that one is contained the other.

i.e., Either $H \subseteq K$ or $K \subseteq H$.

Thus $H \bigcup K = K$ or $H \bigcup K = H$.

Hence $H \bigcup K$ is a subgroup of G.

Conversely, let us assume that $H \bigcup K$ is subgroup of G.

We have to prove that $H \subseteq K$ or $K \subseteq H$

Suppose that H is not contained in K and K is not contained in H.

Then there exist elements a, b such that $a \in H$ and $a \notin K$(1) and $b \in K$ and $b \notin H$(2)

Clearly $a, b \in H \bigcup K$. Since $H \bigcup K$ is subgroup of G, $ab \in H \bigcup K$.

Hence $ab \in H$ or $ab \in K$.

Case(1). Let $ab \in H$. Since $a \in H$, we have $a^{-1} \in H$.

Thus $a^{-1}(ab) = b \in H$ which is contradiction to (2).

Case(2). Let $ab \in K$. Since $b \in K$, we have $b^{-1} \in K$.

Thus $(ab)b^{-1} = a \in K$ which is contradiction to (1).

Hence our assumption that H is not contained in K and K is not contained in H is wrong.

Thus, $H \subseteq K$ or $K \subseteq H$.

Let A and B be two subgroups of a group G.

Then AB is a subgroup of G if and only if AB = BA.

Proof.

Let AB be a subgroup of G.

We claim that AB = BA.

Let $x \in AB$.

Since AB is a subgroup of G, we have $x^{-1} \in AB$.

Let $x^{-1} = ab$ where $a \in A$ and $b \in B$.

Therefore, $x = (ab)^{-1} = b^{-1}a^{-1} \in BA$

Hence $AB \subseteq BA$.

Similarly we can prove $BA \subseteq AB$.

Thus AB = BA.

Conversely, Let AB = BA.

We have to prove that AB is a subgroup of G.

Clearly, $e \in AB$ and hence AB is non-empty.

Now, let $x, y \in AB$.

Then $x = a_1b_1$ and $= a_2b_2$ where $a_1, a_2 \in A$ and $b_1, b_2 \in B$.

Now,
$$xy^{-1} = a_1b_1(a_2b_2)^{-1} = a_1b_1b_2^{-1}a_2^{-1}$$

$$b_2^{-1}a_2^{-1} \in BA$$
.

Since
$$BA = AB$$
, $b_2^{-1}a_2^{-1} \in AB$.

$$b_2^{-1}a_2^{-1} = a_3b_3$$
 where $a_3 \in A$ and $b_3 \in B$.

Therefore,
$$xy^{-1} = a_1b_1a_3b_3$$

Now,
$$b_1a_3 \in BA$$
. Since $BA = AB$, $b_1a_3 \in AB$

Thus,
$$b_1a_3 = a_4b_4$$
, where $a_4 \in A$ and $b_4 \in B$.

Therefore
$$xy^{-1} = a_1(a_4b_4)b_3 \in AB$$

Hence, AB is a subgroup of G.

Corollary. If A and B are subgroups of an abelian group G, then AB is a subgroup of G.

Proof. Let $x \in AB$.

Then x = ab where $a \in A$ and $b \in B$.

Since G is abelian, ab = ba.

Therefore, $x \in BA$. Hence $AB \subseteq BA$.

Similarly $BA \subseteq AB$.

Thus AB = BA.

Hence AB is a subgroup of G.