IMPORTANT DEFINITIONS AND EXAMPLES

Definition

A subset H of a group G is called a **subgroup** of G if H forms a group with respect to the binary operation in G.

Example.1

Let G be any group.

Then $\{e\}$ and G are subgroups of G and this subgroups are called Improper subgroups of G.

Example.2

 $(Q, +)$ is a subgroup of $(R, +)$ and $(R, +)$ is a subgroup of $(C, +)$. Example.3

M 御 ▶ M 君 ▶ M 君 ▶

 Ω

$$
\{1,-1,i,-i\} \text{ is a subgroup of } (C^*,.) .
$$

Example.4

In (Z_8, \oplus) $H_1 = \{0, 4\}$ and $H_2 = \{0, 2, 4, 6\}$ are subgroups of $(Z_8,\oplus).$

Let G be a group.

Then the subgroup $H = \{a/a \in \text{G} \}$ and $a = \text{G}$ xaforall $x \in G$ is called the **centre of** G and is denoted by $Z(G)$.

へのへ

Definition

Let G be a group and let a be a fixed element of G. Then the subgroup $H_a = \{x \mid x \in \text{Gand} \{dx} = xa\}$ is called the Normaliser of a in G.

Let G be a group.

Let $a \in G$. Then the subgroup $H = \{a^n/n \in Z\}$ is called the cyclic subgroup of G generated by a and is denoted by $\langle a \rangle$.

Definition

A group G is cyclic if there exists a an element $a \in G$ such that $G =$.

Example.5

In $(Z, +), < 2> = 2Z$ is a cyclic subgroup of Z. Example.6

The group $G = \{1, -1, i, -i\}$ is cyclic group generated by $\langle i \rangle$ and $\langle -i \rangle$.

Example.7

 (Z_8,\oplus) is a cyclic group generated by 1,2,5 and 7.

Example.8

 $(nZ, +)$ is a cyclic group generated by *n* and $-n$.

Example.9

The group $G=\{1,\omega,\omega^{2}\}$ is a cyclic group generated by ω and $\omega^{2}.$ Example.10

 $2Q$

化异体 人名

 $(R, +)$ is not a cyclic group, since for any $x \in R, \langle x \rangle = \{ nx/n \in \mathbb{Z} \} \neq R.$

Dr. R. GOWRI, Assistant Professor of Mathematics [ALGEBRA](#page-0-0)

```
Let G be a group. Let a \in G. Then Order of a O(a) is the least
positive integer n (if it exists) such that
a^n = e.
If there is no positive integer n such that a^n = e then O(a) is
infinite.
```
Example.11

In any group G , e is the only element of order 1. Example.12 In the group $G\{1, -1, i, -i\}$, o(1)=1, o(-1) = 2, o(i)=4, o(-i)=4. Example.13 In (Z_8, \oplus) o(2)=4 and o(3)=8.

オター・オティ オティ

Let H be a subgroup of G .

Let $a \in G$.

Then the set $aH = \{ah/h \in H\}$ is called the Left Coset of H defined by a in G

Similarly, $Ha = \{ha/h \in H\}$ is called **Right Coset of H defined** by a in G

Example.14

Let $G = (Z_{12}, \oplus)$. Then $H = \{0, 4, 8\}$ is a subgroup of G. The left cosets of H are $0 + H = \{0, 4, 8\} = H$ $1 + H = \{1, 5, 9\}$ $2 + H = \{2, 6, 10\}$ $3 + H = \{3, 7, 8\}$ Note that $4 + H = \{0, 4, 8\} = H$ and $5 + H = \{5, 9, 1\} = 1 + H$ etc.. 어서 동어 있을 Ω

Let H be a subgroup of G. Then the number of distinct left(right) cosets of H in G is called the **Index of H in** G and is denoted by $[G : H]$

へのへ

Example.15

Let $G = (Z_8, \oplus)$. Then $H = \{0, 4, \}$ is a subgroup of G. The left cosets of H are $0 + H = \{0, 4\} = H$ $1 + H = \{1, 5\}$ $2 + H = \{2, 6\}$ $3 + H = \{3, 7\}$ There are four distinct left cosets of H in G. Thus $[G : H] = 4$

Important Theorems Theorem.1

Let H be a subgroup of G . Then

(i) The identity element of H is same as that of G .

(ii). For each $a \in H$ the inverse of a in H is same as the inverse of a in G.

Proof.

(i). Let e and e' be the identities of G and H respectively. Let $a \in H$. Then, $e'a = a$ (since e' is the identity of H). Now, $a = ea$ (since e is the identity of G and $a \in G$). Therefore $e'a = ea$ Thus $e' = e$ (By right cancellation law). Hence (i). (ii). Let a' be the inverse of a in G . Let a'' be the inverse of a in H . Then $a.a' = e = a.a''$. Hence by Cancellation law, we have $a' = a''$. Hence (ii). \triangleright and \equiv \triangleright and つくい

A subset H of a group G is a subgroup of G iff (i). it is closed under the binary operation in G. (ii). The identity e of G is in H . (iii). $a \in H \Rightarrow a^{-1} \in H$.

Proof.

Let H be a subgroup of G. Then By theorem 1, we have (i) , (ii) and (iii).

Conversely let H be a subset of G satisfying conditions (i), (ii) and (iii).

Then, clearly H itself a group under the same binary operation in G.

つくい

Hence H is a subgroup of G .

```
A non-empty subset H of a group G is a subgroup of G if and only
if a, b \in H \Rightarrow ab^{-1} \in H.
Proof.
Let H be a subgroup of G.
Let a, b \in H.
Since H is subgroup, b\in H \Rightarrow b^{-1}\in HThus a,b^{-1} \in H \Rightarrow ab^{-1} \in H (by Closure law).
Conversely, Let H be a non empty subset of G such that
a, b \in H \Rightarrow ab^{-1} \in H......(1)
We have to prove that H is a subgroup of G.
```
へのへ

```
Since H is non-empty, there exists an element a \in H.
Hence aa^{-1} \in H (by (1).
Thus e \in H.
Now e, a \in H \Rightarrow ea^{-1} \in H \Rightarrow a^{-1} \in H.
Let a, b \in H.
Then a,b^{-1} \in H.
By (1), a(b^{-1})^{-1} \in H.
i.e ab \in H. Hence H is closed under the binary operation in G.
Thus By Theorem 2, H is a subgroup of G.
```
へのへ

Let H be a non-empty finite subset of G .

If H is closed under the binary operation in G then H is subgroup of G.

Proof.

Let $a \in H$. Since H is closed and finite, $a, a^2, a^3, \dots a^n, \dots$ are all elements of H

へのへ

and cannot all be distinct.

```
Let a^r = a^s, r < s.
Then a^{s-r} = e \in H.
Let a \in H.
We have proved for some n, a^n = e.
Hence aa^{n-1} = e.
Thus a^{-1} = a^{n-1}.
Hence H is a subgroup of G.
```
Remark.

The converse of above theorem is not true if H is finite. Proof.

```
We know that N is subset of (Z, +).
```
Also N is closed under addition.

But N is not a subgroup of $(Z, +)$.

Theorem.5

The intersection of any two subgroups of group G is also a subgroup of G.

Proof.

Let H and G be two subgroups of G . Then $e \in H$ and $e \in K$. Thus $e \in H \bigcap K$. Hence $H \bigcap K$ is non-empty subset of G. Now, let $a, b \in H \cap K$. Then $a, b \in H$ and $a, b \in K$. Since H and K are subgroups of G, $ab^{-1} \in H$ and $ab^{-1} \in K$. Thus $ab^{-1} \in H \bigcap K$. Hence $H \bigcap K$ is subgroup of G. つくい

The union of two subgroups of group G is a subgroup if and only if one is contained the other.

Proof.

Let H and G be two subgroups of G such that one is contained the other.

へのへ

i.e., Either $H \subseteq K$ or $K \subseteq H$. Thus $H\bigcup K=K$ or $H\bigcup K=H.$ Hence $H \bigcup K$ is a subgroup of G. Conversely, let us assume that $H \bigcup K$ is subgroup of G. We have to prove that $H \subseteq K$ or $K \subseteq H$ Suppose that H is not contained in K and K is not contained in H. Then there exist elements a, b such that $a \in H$ and $a \notin K$(1) and $b \in K$ and $b \notin H$(2) Clearly $a, b \in H \bigcup K$. Since $H \bigcup K$ is subgroup of G, $ab \in H \bigcup K$. Hence $ab \in H$ or $ab \in K$. **Case(1).** Let $ab \in H$. Since $a \in H$, we have $a^{-1} \in H$. Thus $a^{-1}(ab) = b \in H$ which is contradiction to (2). **Case(2).** Let $ab \in K$. Since $b \in K$, we have $b^{-1} \in K$. Thus $(ab)b^{-1} = a \in K$ which is contradiction to (1). Hence our assumption that H is not contained in K and K is not contained in H is wrong. Thus, $H \subseteq K$ or $K \subseteq H$.

へのへ

```
Let A and B be two subgroups of a group G.
Then AB is a subgroup of G if and only if AB = BA.
Proof.
Let AB be a subgroup of G.
We claim that AB = BA.
Let x \in ABSince AB is a subgroup of G, we have x^{-1} \in AB.
Let x^{-1} = ab where a \in A and b \in B.
Therefore, x = (ab)^{-1} = b^{-1}a^{-1} \in BAHence AB \subseteq BA.
Similarly we can prove BA \subseteq AB.
Thus AB = BA.
```
Conversely, Let $AB = BA$. We have to prove that AB is a subgroup of G . Clearly, $e \in AB$ and hence AB is non-empty. Now, let $x, y \in AB$. Then $x = a_1b_1$ and $= a_2b_2$ where $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Now, $xy^{-1} = a_1b_1(a_2b_2)^{-1} = a_1b_1b_2^{-1}a_2^{-1}$ $b_2^{-1}a_2^{-1} \in BA$. Since $BA = AB$, $b_2^{-1}a_2^{-1} \in AB$. $b_2^{-1}a_2^{-1} = a_3b_3$ where $a_3 \in A$ and $b_3 \in B$. Therefore, $xv^{-1} = a_1b_1a_3b_3$ Now, $b_1a_3 \in BA$. Since $BA = AB$, $b_1a_3 \in AB$ Thus, $b_1 a_3 = a_4 b_4$, where $a_4 \in A$ and $b_4 \in B$. Therefore $xy^{-1} = a_1(a_4b_4)b_3 \in AB$ Hence, AB is a subgroup of G .

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶ ...

Corollary. If A and B are subgroups of an abelian group G , then AB is a subgroup of G. **Proof.** Let $x \in AB$. Then $x = ab$ where $a \in A$ and $b \in B$. Since G is abelian, $ab = ba$. Therefore, $x \in BA$. Hence $AB \subseteq BA$. Similarly $BA \subset AB$. Thus $AB = BA$. Hence AB is a subgroup of G .