Let A and B be two sets. Each element x of A there is associated, an element of B, which we denote by $f(x)$. Then f is said to be a function from A to B (or a mapping of A into B). The set A is called the domain of f and the elements $f(x)$ are called the values of f . The set of all values of f is called the range of f.

Let A and B be two sets and let f be a mapping of A into B. If E \subset A, f(E) is defined to be the set of all elements f(x), for $x \in E$. We call $f(E)$ the image of E under f. In this notation, $f(A)$ is the range of f. It is clear that $f(A) \subset B$. If $f(A) = B$, we say that f maps A onto B.

A relation \sim on a set A is said to be equivalence relation if

 \leftarrow \Box

 $2Q$

€

- I Reflexive. a∼a.
- \triangleright Symmetric. If a∼b then b∼a.
- **F** Transitive. If a∼b, b∼c then a~c.

Example

Let S = Z. a∼ b means a \equiv b (mod m). To Prove that \sim is an equivalence relation. Proof. a≡b (mod m) means a-b is multiple of m. (i). Reflexive. Clearly $a - a = 0$ which is multiple of m. $a \equiv a \pmod{m}$. a $\sim a$. Hence reflexive is true. (ii). Symmetric. Let a \sim b. To prove that b \sim a. Since a∼b, we have a -b is multiple of m. Therefore, b-a is also multiple of m. $b \equiv a \pmod{m}$. Thus $b \sim a$.

(iii) Transitive. Let a \sim b, b \sim c then we have to prove that a \sim c. a \sim b implies a-b is multiple of m. a $b = km (1)$ where k is an integer. $b \sim c$ implies b c is multiple of m. i.e b-c = k_1 m..(2), where k_1 is an integer. Now, a -c = km +b -c = km + k_1 m = $(k+k_1)$ m Therefore, a $c = k_2$ m, where $k_2 = k+k_1$ is also an integer. Hence a - c is multiple of m. i.e a \equiv c (mod m) Hence a∼ c. Thus transitive is true. Thus ∼ satisfies Reflexive, Symmetric and Transitive. Hence \sim is an equivalence relation.

へのへ

A relation \sim on a set A is said to be Partial order relation if

 \leftarrow \Box

 $2Q$

€

- **E** Reflexive. a∼a.
- \triangleright Antisymmetric If a∼b, b∼a then a=b
- **F** Transitive. If a∼b, b∼c then a∼c.

Let J be set of positive integers. For any positive integers n , Let $J_n = \{1, 2, \dots, n\}$ The set A is finite if $A \sim J_n$

Definition

Countable

Then the set A is said to be **Countable**, if there exists $1-1$ correspondence between the set A and J i.e $A \sim J$

Definition

at most countable

The set A is said to be at most countable, if A is finite or countable.

Definition

Un Countable

The set A is said to be Un Countable, if A is neither finite nor countable.

へのへ

Dr. R. GOWRI, Assistant Professor of Mathematics [REAL ANALYSIS](#page-0-0)

Example Let $A = \{ \dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots \}$ be set of all integers.

Let $J = \{1, 2, \dots \}$ be set of positive integers. Define $f: J \rightarrow A$ as: $f(n) = \frac{n}{2}$ if n is even $f(n) = \frac{(n-1)}{2}$ if n is odd Then f is 1-1 correspondence between J and A. Hence A is countable.

Thus set of all integers is countable.

Definition

Sequence: The sequence is a function f defined on the set J of all positive integers.

メタトメ ミトメ ミト

へのへ

If $f(n) = x_n$, $n \in J$ is a sequence f denoted by $\{x_n\}$.

The elements of $\{x_n\}$ are called terms of the sequence.

Theorem:1 Every infinite subset of a countable set A is countable. Proof. Let A be countable.

Let E be infinite subset of A.

We have to prove that E is countable. Now, arrange the elements

x of A as a sequence $\{x_n\}$ of distinct elements.

Construct a sequence $\{n_k\}$ as follows:

Let n_1 be the smallest integer such that $x_{n_1} \in E$.

Choose n_2 be the smallest integer > n_1 such that $x_n \in E$

Choose n_3 be the smallest integer > n_2 such that $x_{n_3} \in E$

Continuing in this way, Let n_k be the smallest integer > n_{k-1} such that $x_{n_k} \in E$ etc..

Take $f(k) = x_{n_k}, k = (1, 2, 3, \dots).$

We get a 1-1 correspondence between E and J (the set of positive integers).

 \Box

- 4 店)

つくい

Hence E is countable.

Thus infinite subset of a countable set is countable.

 $k = 1, 2, 3, \ldots$

Theorem: 2 Let ${E_n}$, $n = 1,2,......$ be a sequence of countable sets.

Let $S = \bigcup_{n=1}^{\infty} E_n$. Then S is countable. (i.e., countable union of countable sets is countable.)

 $2Q$

 \mathcal{A} and \mathcal{A} . The \mathcal{A} is a set of \mathcal{B}

Proof.. Let every set E_n be arranged in a sequence $\{x_{n_k}\}\$,

Consider the array, x_{11} x_{12} x_{13} x_{14} x_{21} x_{22} x_{23} x_{24} x_{31} x_{32} x_{33} x_{44} x_{41} x_{42} x_{43} x_{44} x_{n1} x_{n2} x_{n3} x_{n4}

```
Now, the elements of E_n form the n^{th} row.
Also, the array contains all the elements of S.
These elements and be arranged in a sequence,
x11; x21, x12; x31, x22, x13; x41, x32, x23, x14; ...........(1)
If any two elements of E_n have elements in common, these will
appear more than once in (1).
Since E_1 \subset S and E_1 is infinite, thus S is infinite.
Hence, there is a subset T of the set of all positive integers such
that S \sim T. Thus S is countable.
Hence countable union of countable sets is countable.
```
Corollary. Suppose A is at most countable, and for every $\alpha \in A$, B_{α} is at most countable. Take $\mathcal{T} = \bigcup_{\alpha \in A} B_\alpha$. Then $\mathcal T$ is at most countable **Proof.** Clearly T is a subset of S (as in theorem 2). Since S is countable, and $T \subset S$, By theorem 1 " infinite subset of a countable set is countable", Hence, we have T is countable.

へのへ

Theorem. 3 Let A be a countable set. Let B_n be the set all of n-tuples (a_1, a_2, \ldots, a_n) .

and the elements $a_1, a_2, \dots a_n$ need not be distinct. Then B_n is countable.

Proof.

This theorem is prove by mathematical induction on n.

Since, B_1 subsetA and A is countable, hence we have B_1 is countable.

Hence theorem is true for $n=1$. Assume that result is true for B_{n-1} . (i.e) B_{n-1} is countable. We have to prove that theorem for

B_n .

Now, the elements of B_n are of the form,

 (b, a) $(b \in B_{n-1}, a \in A)$.

For every fixed b, the set of pairs $(b, a) \sim A$ and hence countable. Thus B_n is union of countable sets of countable sets, By theorem (2) , B_n is countable.

K ロ ト K 御 ト K ミ ト

つくい

Corollary. The set of all rational numbers is countable. Proof..

By theorem 3, take $n = 2$.

We know that every rational number r is of the form $\frac{b}{a}$, where a and b are integers.

The set of pairs (a,b) is countable and hence the fraction $\frac{b}{a}$ is countable.

へのへ

Thus set of all rational numbers are countable.

Theorem. 4 Let A be the set of all sequences whose elements are the digits 0 and 1 . Then the set A is countable. (The elements of sequences like $1,0,0,1,1,0,0,1,0,1,1,1,0,...$) Proof. Let F be the countable subset of A. Let E consist of the sequences $s_1, s_2, \ldots, s_n, \ldots$ Let us now construct a sequence s as follows: If the n^{th} digit in s_n is 1, then n^{th} digit of s is 0 and vice-versa. Thus we get a sequence s differs from every member of E at least one place. Hence $s \notin E$. Clearly $s \in A$. Hence E is a proper subset of A. i.e. we have prove that every countable subset of \overline{A} is proper subset of A.

Since A not at all proper subset of A,Thus A is uncountable. Hence the Theorem.

へのへ