Let A and B be two sets. Each element x of A there is associated, an element of B, which we denote by f(x). Then f is said to be a function from A to B (or a mapping of A into B). The set A is called the domain of f and the elements f(x) are called the values of f. The set of all values of f is called the range of f.

Let A and B be two sets and let f be a mapping of A into B. If E \subset A, f(E) is defined to be the set of all elements f(x), for x \in E. We call f(E) the image of E under f. In this notation, f(A) is the range of f. It is clear that f(A) \subset B. If f(A) = B, we say that f maps A onto B.

A relation \sim on a set A is said to be equivalence relation if

- ▶ Reflexive. a~a.
- ► Symmetric. If a~b then b~a.
- Transitive. If $a \sim b$, $b \sim c$ then $a \sim c$.

Example

Let S = Z. $a \sim b$ means $a \equiv b$ (mod m). To Prove that \sim is an equivalence relation. Proof. $a \equiv b \pmod{m}$ means a-b is multiple of m. (i). Reflexive. Clearly a - a = 0 which is multiple of m. $a \equiv a \pmod{m}$. $a \sim a$. Hence reflexive is true. (ii). Symmetric. Let a \sim b. To prove that b \sim a. Since $a \sim b$, we have a -b is multiple of m. Therefore, b-a is also multiple of m. $b \equiv a \pmod{m}$. Thus $b \sim a$.

(iii) Transitive. Let $a \sim b$, $b \sim c$ then we have to prove that $a \sim c$. $a \sim b$ implies a-b is multiple of m. a b = km (1)where k is an integer. $b \sim c$ implies b c is multiple of m. i.e b-c = k_1 m..(2), where k_1 is an integer. Now, a $-c = km + b - c = km + k_1m = (k+k_1)m$ Therefore, a $c = k_2$ m, where $k_2 = k + k_1$ is also an integer. Hence a - c is multiple of m. i.e a \equiv c (mod m) Hence $a \sim c$. Thus transitive is true. Thus \sim satisfies Reflexive, Symmetric and Transitive. Hence \sim is an equivalence relation.

A relation \sim on a set A is said to be Partial order relation if

- ▶ Reflexive. a~a.
- ► Antisymmetric If a~b, b~a then a=b
- Transitive. If $a \sim b$, $b \sim c$ then $a \sim c$.

Let J be set of positive integers. For any positive integers n, Let $J_n = \{1, 2, ..., n\}$ The set A is finite if $A \sim J_n$

Definition

Countable

Then the set A is said to be **Countable**, if there exists 1-1 correspondence between the set A and J i.e $A \sim J$

Definition

at most countable

The set A is said to be **at most countable**, if A is finite or countable.

Definition

Un Countable

The set *A* is said to be **Un Countable**, if *A* is neither finite nor countable.

Dr. R. GOWRI, Assistant Professor of Mathematics REAL ANALYSIS

Example Let $A = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$ be set of all integers.

Let $J = \{1, 2, \dots, \}$ be set of positive integers. Define $f : J \rightarrow A$ as: $f(n) = \frac{n}{2}$ if n is even $f(n) = \frac{(n-1)}{2}$ if n is odd Then f is 1-1 correspondence between J and A. Hence A is countable.

Thus set of all integers is countable.

Definition

Sequence: The sequence is a function f defined on the set J of all positive integers.

(本間) (本語) (本語)

If $f(n) = x_n$, $n \in J$ is a sequence f denoted by $\{x_n\}$. The elements of $\{x_n\}$ are called terms of the sequence. **Theorem:1** Every infinite subset of a countable set A is countable. **Proof.** Let A be countable.

Let E be infinite subset of A.

We have to prove that E is countable. Now, arrange the elements

x of A as a sequence $\{x_n\}$ of distinct elements.

Construct a sequence $\{n_k\}$ as follows:

Let n_1 be the smallest integer such that $x_{n_1} \in E$.

Choose n_2 be the smallest integer $> n_1$ such that $x_{n_2} \in E$

Choose n_3 be the smallest integer $> n_2$ such that $x_{n_3} \in E$

Continuing in this way, Let n_k be the smallest integer $> n_{k-1}$ such that $x_{n_k} \in E$ etc..

Take $f(k) = x_{n_k}$, k = (1, 2, 3,).

We get a 1-1 correspondence between E and J (the set of positive integers).

・ 同 ト ・ ヨ ト ・ ヨ ト

Hence E is countable.

Thus infinite subset of a countable set is countable.

Theorem: 2 Let $\{E_n\}$, $n = 1, 2, \dots$ be a sequence of countable sets.

Let $S = \bigcup_{n=1}^{\infty} E_n$. Then S is countable. (i.e., countable union of countable sets is countable.)

Proof. Let every set E_n be arranged in a sequence $\{x_{n_k}\}$,

k =1,2,3,.....

Consider the array,


```
Now, the elements of E_n form the n^{th} row.
Also, the array contains all the elements of S.
These elements and be arranged in a sequence,
x_{11}; x_{21}, x_{12}; x_{31}, x_{22}, x_{13}; x_{41}, x_{32}, x_{23}, x_{14}; .....(1)
If any two elements of E_n have elements in common, these will
appear more than once in (1).
Since E_1 \subset S and E_1 is infinite, thus S is infinite.
Hence, there is a subset T of the set of all positive integers such
that S \sim T. Thus S is countable.
Hence countable union of countable sets is countable.
```

Corollary. Suppose A is at most countable, and for every $\alpha \in A$, B_{α} is at most countable. Take $T = \bigcup_{\alpha \in A} B_{\alpha}$. Then T is at most countable **Proof.** Clearly T is a subset of S (as in theorem 2). Since S is countable, and $T \subset S$, By theorem 1 " infinite subset of a countable set is countable", Hence, we have T is countable. **Theorem. 3** Let A be a countable set. Let B_n be the set all of n-tuples (a_1, a_2, \dots, a_n) .

and the elements a_1, a_2, \dots, a_n need not be distinct. Then B_n is countable.

Proof.

This theorem is prove by mathematical induction on n.

Since, B_1 subset A and A is countable, hence we have B_1 is countable.

Hence theorem is true for n=1. Assume that result is true for

 B_{n-1} . (i.e) B_{n-1} is countable. We have to prove that theorem for B_n .

Now, the elements of B_n are of the form,

 $(b, a) (b \in B_{n-1}, a \in A).$

For every fixed *b*, the set of pairs $(b, a) \sim A$ and hence countable. Thus B_n is union of countable sets of countable sets, By theorem (2), B_n is countable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary. The set of all rational numbers is countable. **Proof.**

By theorem 3, take n = 2.

We know that every rational number r is of the form $\frac{b}{a}$, where a and b are integers.

The set of pairs (a,b) is countable and hence the fraction $\frac{b}{a}$ is countable.

Thus set of all rational numbers are countable.

Theorem. 4 Let A be the set of all sequences whose elements are the digits 0 and 1. Then the set A is countable. (The elements of sequences like 1,0,0,1,1,0,0,1,0,1,1,1,0,......) **Proof.** Let *E* be the countable subset of *A*. Let *E* consist of the sequences $s_1, s_2, \dots, s_n, \dots$ Let us now construct a sequence s as follows: If the n^{th} digit in s_n is 1, then n^{th} digit of s is 0 and vice-versa. Thus we get a sequence s differs from every member of E at least one place. Hence $s \notin E$.

Clearly $s \in A$. Hence *E* is a proper subset of *A*.

i.e. we have prove that every countable subset of A is proper subset of A.

Since A not at all proper subset of A, Thus A is uncountable. Hence the Theorem.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶