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FINITE, COUNTABLE, AND UNCOUNTABLE SETS

Definition
Let A and B be two sets. Each element x of A there is associated,
an element of B, which we denote by f(x). Then f is said to be a
function from A to B (or a mapping of A into B). The set A is
called the domain of f and the elements f(x) are called the values
of f . The set of all values of f is called the range of f.
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FINITE, COUNTABLE, AND UNCOUNTABLE SETS

Definition
Let A and B be two sets and let f be a mapping of A into B. If E
⊂ A, f(E) is defined to be the set of all elements f(x), for x∈ E.
We call f(E) the image of E under f. In this notation, f(A) is the
range of f . It is clear that f(A)⊂ B.
If f(A) = B, we say that f maps A onto B.
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Definition
A relation ∼ on a set A is said to be equivalence relation if

I Reflexive. a∼a.

I Symmetric. If a∼b then b∼a.

I Transitive. If a∼b, b∼c then a∼c.
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Example
Let S = Z. a∼ b means a≡ b (mod m). To Prove that ∼ is an
equivalence relation. Proof. a≡b (mod m) means a-b is multiple of
m. (i). Reflexive.
Clearly a - a = 0 which is multiple of m.
a ≡ a (mod m). a∼ a. Hence reflexive is true.
(ii). Symmetric.
Let a ∼ b. To prove that b ∼ a.
Since a∼b, we have a -b is multiple of m.
Therefore, b-a is also multiple of m.
b ≡ a (mod m) . Thus b ∼ a.
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(iii) Transitive.
Let a∼ b, b ∼ c then we have to prove that a ∼ c.
a ∼ b implies a-b is multiple of m.
a b = km (1)where k is an integer.
b ∼ c implies b c is multiple of m.
i.e b-c = k1m..(2), where k1 is an integer.
Now, a -c = km +b -c = km + k1m = (k+k1) m
Therefore, a c = k2 m, where k2 = k+k1 is also an integer.
Hence a - c is multiple of m.
i.e a ≡ c (mod m)
Hence a∼ c. Thus transitive is true.
Thus ∼ satisfies Reflexive, Symmetric and Transitive.
Hence ∼ is an equivalence relation.
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A relation ∼ on a set A is said to be Partial order relation if

I Reflexive. a∼a.

I Antisymmetric If a∼b, b∼a then a=b

I Transitive. If a∼b, b∼c then a∼c.
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Definition
Let J be set of positive integers. For any positive integers n, Let
Jn = {1, 2, .....n}
The set A is finite if A ∼ Jn

Definition
Countable
Then the set A is said to be Countable, if there exists 1-1
correspondence between the set A and J i.e A ∼ J

Definition
at most countable
The set A is said to be at most countable, if A is finite or
countable.

Definition
Un Countable
The set A is said to be Un Countable, if A is neither finite nor
countable.
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Example Let A = {......− 4,−3,−2,−1, 0, 1, 2, 3, 4, .....} be set of
all integers.
Let J = {1, 2, ..........} be set of positive integers.
Define f : J → A as:
f (n) = n

2 if n is even

f (n) = (n−1)
2 if n is odd

Then f is 1-1 correspondence between J and A.
Hence A is countable.
Thus set of all integers is countable.

Definition
Sequence: The sequence is a function f defined on the set J of all
positive integers.
If f (n) = xn, n ∈ J is a sequence f denoted by {xn}.
The elements of {xn} are called terms of the sequence.
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Theorem:1 Every infinite subset of a countable set A is countable.
Proof. Let A be countable.
Let E be infinite subset of A.
We have to prove that E is countable. Now, arrange the elements
x of A as a sequence {xn} of distinct elements.
Construct a sequence {nk} as follows:
Let n1 be the smallest integer such that xn1 ∈ E .
Choose n2 be the smallest integer > n1 such that xn2 ∈ E
Choose n3 be the smallest integer > n2 such that xn3 ∈ E
Continuing in this way, Let nk be the smallest integer > nk−1 such
that xnk ∈ E etc..
Take f (k) = xnk , k = (1, 2, 3, ......).
We get a 1-1 correspondence between E and J (the set of positive
integers).
Hence E is countable.
Thus infinite subset of a countable set is countable.
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Theorem: 2 Let {En}, n = 1,2,....... be a sequence of countable
sets.
Let S =

⋃∞
n=1 En. Then S is countable. (i.e., countable union of

countable sets is countable.)
Proof.. Let every set En be arranged in a sequence {xnk},
k =1,2,3,.......
Consider the array,

x11 x12 x13 x14 ....
x21 x22 x23 x24 ....
x31 x32 x33 x44 ....
x41 x42 x43 x44 ....
........ ......... ........ ......... ....
........ ......... ........ ......... ....
........ ......... ........ ......... ....
xn1 xn2 xn3 xn4 ....
........ ......... ........ ......... ....
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Now, the elements of En form the nth row.
Also, the array contains all the elements of S .
These elements and be arranged in a sequence,
x11; x21, x12; x31, x22, x13; x41, x32, x23, x14; ...........(1)
If any two elements of En have elements in common, these will
appear more than once in (1).
Since E1 ⊂ S and E1 is infinite, thus S is infinite .
Hence,there is a subset T of the set of all positive integers such
that S ∼ T . Thus S is countable.
Hence countable union of countable sets is countable.
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Corollary. Suppose A is at most countable, and for every α ∈ A ,
Bα is at most countable.
Take T =

⋃
α∈A Bα. Then T is at most countable

Proof. Clearly T is a subset of S ( as in theorem 2). Since S is
countable, and T ⊂ S , By theorem 1 ” infinite subset of a
countable set is countable”,
Hence, we have T is countable.
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Theorem. 3 Let A be a countable set. Let Bn be the set all of
n-tuples (a1, a2, ....an).
and the elements a1, a2, ....an need not be distinct. Then Bn is
countable.
Proof.
This theorem is prove by mathematical induction on n.
Since, B1 subsetA and A is countable, hence we have B1 is
countable.
Hence theorem is true for n=1. Assume that result is true for
Bn−1. (i.e) Bn−1 is countable. We have to prove that theorem for
Bn.
Now, the elements of Bn are of the form,
(b, a) (b ∈ Bn−1, a ∈ A).
For every fixed b, the set of pairs (b, a) ∼ A and hence countable.
Thus Bn is union of countable sets of countable sets, By theorem
(2), Bn is countable.
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Corollary. The set of all rational numbers is countable.
Proof..
By theorem 3, take n = 2.
We know that every rational number r is of the form b

a , where a
and b are integers.
The set of pairs (a,b) is countable and hence the fraction b

a is
countable.
Thus set of all rational numbers are countable.
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Theorem. 4 Let A be the set of all sequences whose elements are
the digits 0 and 1. Then the set A is countable.
(The elements of sequences like 1,0,0,1,1,0,0,1,0,1,1,1,0,.........)
Proof. Let E be the countable subset of A.
Let E consist of the sequences s1, s2, .....sn, .....
Let us now construct a sequence s as follows:
If the nth digit in sn is 1, then nth digit of s is 0 and vice-versa.
Thus we get a sequence s differs from every member of E at least
one place.
Hence s /∈ E .
Clearly s ∈ A. Hence E is a proper subset of A.
i.e. we have prove that every countable subset of A is proper
subset of A.
Since A not at all proper subset of A,Thus A is uncountable.
Hence the Theorem.
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