jons
3. Linear Transformatl

jons
3.1. Linear T ~ansformation

troduce linear transformations, the objects Whlghdwii
shall study in most of the remainder of .this book. The rgader mjy ezdix
helpful to read (or reread) the discussion of fun(:ItIOIIS. in the ApPP )
since we shall freely use the terminology of that discussion.

s over the field F. A linear
V into W such that

We shall now in

ion. Let V and W be vector space
on from Vinto Wisa function T from

T(ca + B) = ¢(Ta) + T8
for all « and B in V and all scalars ¢ in F.

Definit

transformati

Exampre 1. If V is any vector space, the identity transformation
I, defined by Ia = a, is a linear transformation from V into V. The
zero transformation 0, defined by Oa = 0, is a linear transformation

from V into V.

EmpLE 9 Let F be a field and let V be the space of polynomial
functions f from F into F, given by

Let f@)=ca+ear+ - + a2t

(D) (@) = &1 + 2z + -+ + kez*1.

Then D is a linear t .
ransf i : .
i aigOn ormation from V into V—the differentiation
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¥ e = AX is a linear transfomtheﬁeh
FXAMPLE 3: byl (X) = g,

altons . ‘ .
Linear Trangfo™ be & fixed m X n matrix with entrieg ; j
3

8 3 t
~ 7 m defined P: by Ula) = ad is 4 j; on g ®
The fu]!l(:t:(w)l;“7 ’Ic‘l[fe functIOIl U deﬁned y ( a lllleal, b\r
frxt into I Fm into £

. m : 1
formation 1o e a fixed m X m matrix with entrieg in g},

b . e
EXAMPLE 4" I’et,P n matrix over F. Deﬁr-le a .functlon T fmﬁelh
nd let @ be & fixed 7 7(4) = PAQ. Then T is a linear trangg
8

mXn illto ltself Y M

SpaCe F . frnXﬂ, becﬂuse
from Fmx» into I T(CA +B) = P(cA + B)Q ?:
= (cPA + PB)Q |
= cPAQ + PBQ
5 be the field of real numbers and let V b, thegy, |
Eopa L Let]? into B which are continuous. Define T by i

of all functions from

(T)@) =[50

. ion from V into V. The function 7.

'« a linear transformation : N n
Tl;elclmil; ]:oztirlmous but has a continuous first derivative. The lineariy
1o y

of integration is one of its fundamental properties.

The reader should have no difficulty in ve:rifying that the transfy,
mations defined in Examples 1, 2, 3, and 5 are linear transformatiopg We
shall expand our list of examples considerably as we learn mope aboy

linear transformations. ) : : '
It is important to note that if 7' is a linear transformation fropy y

into W, then T'(0) = 0; one can see this from the definition because
: T(0) = T(0 4 0) = T(0) + T(0).

This point is often confusing to the person who is studying linear algebrs ;
for the first time, since he probably has been exposed to a slightly different |
use of the term ‘linear function.’ A brief comment should clear up the |
confusion. Suppose V is the vector space R. A linear transformation fron |
Vinto Vis then g particular type of real-valued function on the real lineR. |
In a caleulus course, one woyld probably call such a funetion linear if it |
graph is a straight line. A linear transformation from R! into R, accordin ;
z:rzi‘:;hiiel?itlon, _Will be a functior% f.rom R into R, the graph of which is ;

Passing through, the origin, ;

T sl :
n addition to the Property T'(0) = 0, let us point out another propert! |

of th i :
linea: c%)?gi‘il il'near transformation T. Sych a transformation ‘p
atlons; B :
are scalars, thep " that i, if %+« ., & are vectors in ¥ and ¢y, - - +1®
T(Clal +

i aa) = a(Tw) 4oL o6 (Tay),

i.




Sec. 3.1 Linear Transformations

This follows readily from the definition. For example,

T(cion + Coatz) = ¢i(Tay) + T(cren)
= a1(Tor) + coTenr).

Theorem 1. Let V be a finite-dimensional vector space over the field ¥
and let {eu, . . ., @z} be an ordered basis for V. Let W be a vector space over the
same field F and let By, . . ., 8, be any vectors in W. Then there is precisely
one linear transformation T from V into W such that

Tai=6i: j=1,...,11.

Proof. To prove there is some linear transformation 7' with Ta; =
B; we proceed as follows. Given « in V, there is a unique n-tuple (zy, . . . , Zs)

such that
a =+ -+ Tudta.

For this vector « we define
Ta =z + -+ + Zobn-

. Then T is a well-defined rule for associating with each vector  in V a
vector Te in W. From the definition it is clear that Ta; = B; for each J.
To see that T is linear, let

B=1tu+ - + Ynaa

. bein V and let ¢ be any scalar. Now

: ca+ B = (cz1+ p)ar+ - + (Zn + Yn)s
'~ and so by definition

T(Ca + ﬁ) - (wl + yl)ﬁl + A + (CI,, + yn)ﬁn-
. On the other hand,
oTa) + T8 = ¢ £ 28+ 2 i
= Zj: (cxi + y3)Bs

1

: 1
- and thus
T(ca + B) = ¢(Te) + TB.

If U is a linear transformation from V into W with Ua; = 8;, J =

1 T then for the vector a = él z;a; we have
P (21 :c,-a,-)
- 32;1 z(Uas)
= i z:8;

i=1
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Chap, 5
. ond .
Linear Trangformalion which we defined above. This shows that, the

/i
3 C l . 1
is exactly the rul = f; 18 unique. i

so that U ation T with T'a;

linear transform entary; however, it i8 80 basic tT};at We hay,
m G g LIfVand w
enera,
. lly. The concept of function ilﬂ Vefrjffu%l ctions from V ity av;e
Sba Inam aces, there is a multitude tions which are Jiygq,.
assen) Vecltorthpund«;r.s:core the fact that the function Inegy
Theorem 1 helps to

are extremely special.

' ' e
Theorem 1 is quite el

tors
Exampre 6. The vec
) ap = (1J 2)
ay = (3’ 4) ’ .
basis for R2 ccording ¢,
i i dent and therefore form a : ;
;r;‘, iilr‘:iﬂly ltrlﬁ,:: e;: : rllmique linear transformation from R? into R3 such
e )
that Tal i
Toy = (6, 5, 4).
If so, we must be able to find T'(e1). We find scalars ¢, ¢; such that ¢ =

=

aen + coae and then we know that Te = ¢iTa; + coTos. If {, 0) =
a(l, 2) + cx(3, 4) then g = —2 and ¢; = 1. Thus

T(l! 0) = ""'2(3’ 2: 1) + (6; 51 4-)
=, (01 1, 2)

ExampLe 7. Let T be a linear transformation from the m~tuple space
F™ into the n-tuple space F~. Theorem 1 tells us that T is uniquely de-
termined by the sequence of vectors By ..., Bn where
Bi=Te, i=1,...,m.

In short, T is uniquely determined b

y the images of the standard basis
vectors. The determination is

a = (xl,---,$m)

Ta=zf + .. 44,4,

If Bisthem X n matrix which has row vectors 8y, . . ., Bm, this says that

. Ta = B,
In other words, if g; = Baf « 554 B.,), then
B, B,
T(ml, o 37") = [331 Q‘;m] [E 1 : 1
Th . Bml an
18 18 & very explicit deseription of the 1 '
n tion
3.4 we sha]] make a serigyg study of tl:}a rela.e&r e
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formations and matrices. We shall not : -
R o pursue the particular des
Ta = aB because it has p description

the matrix B on the ri
: ) he right of the vector @, and that
can lead to some confusion. The point of this example is to show that we

can give an explicit and reasonably si g .
"t ¥ simple description of all linear trans-
formations from F= into F= p rans

If T is a linear tmx}sfornmtion from V" into W, then the range of T is
not only 3 subset of W:itisa subspace of W. Let Ry be the range of T, that
is, the set.of all vectors 38 in W such that 8 = Ta for some « in V. I:et 8
and 3: be In Rr and let ¢ be a scalar. There are vectors a; and a; in V such
that Tex = 8 and Tas = 3,. Since T is linear

T(cer + as) = cToy + Tay
o qsl. + ﬁ!)
which shows that ¢3; + 8, is also in Rj.
Another interesting subspace associated with the linear transformation

T is the set .\: consisting of the vectors a in V such that Ta = 0. It is a
subspace of V because

(a) T(0) = 0, so that N is non-empty;
(b) i Tay = Tay = 0, then

T(car + as) = cTay + Tas
=c0+0
=0

sothat-cal-}-czgisinN.

Definition. Let V and W be vector spaces over the field ¥ and let T
be a linear transformation from V inio W. The null space of T is the set
of all veciors a in V such that Ta = 0.

If V is finite-dimensional, the rank of T s the dimension of the range
of T and the nullity of T is the dimension of the null space of T.

The following is one of the most important results in linear algebra.

Theorem 2. Let V and W be vector spaces over the field F and let T be
a linear transformation from V into W. Suppose that V is finite-dimensional.
Then -

rank (T) + nullity (T) = dim V.

Proof. Let {a, ..., be a basis for N, the null space of T.
There are vectors @iy, - - - , @ in V such that {ay, . . ., ) is & basis for V.
We shall now prove that {Ta, . - -, T} is a basis for the range of T
The vectors Tag, . . . , Tera certainly span the range of T, and since Ta; = 0,
for j < k, we see that Tz, - - -, Taa Span the range. To see that these
vectors are independent, suppose we have scalars c; such that

3 ci(Tas) = 0.
i=k+1
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Cha,
This says that

8
T( Enl c;a.') =0
ekl
n o
"ud accordingly the veetor o < ,-.}k;q-lcm 'S 10 the null gpge, of T Sing,
My e form o basis fop N, there must be scalars b,, | , by such, the,
k
a= 2% ba;
i=1
Thus
k n
X — Ciay =
‘2_‘,1 b ; 2:3+1 o
and since o, » @ are linearly independent, We must haye
b1‘=‘ bg,=Ck.!.1~ =Cp =),
If r is the rank of 7' the fact that Tapyy ) Tan_fOI‘ Si8 o,
the range of T tells us that » = 5 _ k. Sinee k i the nullity of 7 dn i
¢ dimension of y We are done. |
Theorem 3. If A s an m X n magpiy with entries N the eld F, then,
Tow rank (A) = column, ran} (A).

Proof. Let be the linear transformation from Fma Into fmy
defined by T(x ) = 4X, The ny]1 Space of T s the solution Space fop the
System 4 X = » Le., the get of all colump matrices X Such that AX -

€ range of T is the set of all i w1 column Tatrices ¥ gyep, that 4 x _
48 a solution fop X If A5 0.7 n are the columng of 4, then
AX = :UIAI + + qun
8o that the range of T is the subspace Spanned by the columng of 4.1
other words, the range of T ig the Column spgee of A, T erefore,
rank (T) = column rap) (4).
Theorem 9 tells us th
hen

at if S is the solution Space for the System Ax =
dim § 4 column rap) (4) = p.

0

Example 15 of Chapter 9. Oﬁr deliber&tions there
» 1 7 is the dimensioy, of the r
Space S hag 5 basis consigtj

OW space of 4, then the solution
ngof n — , vectors:

dim § = " = row rank (4).
It is now apparent that ;
TOW rank (4) =

—
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Exercises

L. Which of the following functions T from R? into R* are linear transformations?

2 Pood = (1 4 2, 1y);

bh) oy, ) = (2 1);
T(n, 2 = (2}, ),

d) T(z, 2 = (sin 2y, 2,);

(@) T2y, 20) = (2, = 1, 0).

2. Find the range, rank, null space, and nullity for the gero transformation and
the wentity transformation on a finite<dimensional space V.

3. Describe the range and the null space for the differentiation transformation
of Example 2. Do the same for the integration transformation of Example 5.

4. Is there a linear transformation T from R? into R? such that T(l, =1,1) =
(1,0)and T(1,1,1) = (0, 1)?

5. 1

a=(l,=1), B=(1,0)

a=(2,=-1), Br=(01)

a=(=3,2), B=(,1)

i there & Linear transformation T from R? into R? such that Ta; = 8, fori = 1, 2
and 3?

6. Describe explicitly (as in Exercises 1 and 2) the linear transformation 7' from
F* into F? such that Te, = (a, b), Tes = (c, d).

7. Let F be a subfield of the complex numbers and let T be the funetion from
F* nto F® defined by

T(zy, 25, 2) = (1) = 23+ 253, 20, + 1y, =1, — 213 + 213).

8) Verify that T is a linear transformation.

(b) If (a,b,¢) is & vector in F?, what are the conditions on a, b, and ¢ that
the vector be in the range of T? What is the rank of T7?

(¢) What are the conditions on a, b, and ¢ that (a, b, ¢) be in the null space
of T? What is the nullity of 77

8. Deseribe explicitly a linear transformation from R into R* which has as its
mnge the subspace spanned by (1,0, —=1) and (1, 2, 2).

9. Let V be the vector space of all n X n matrices over the field F, and let B
be & fixed n X n matrix. If

T(A) = AB - BA
verify that T is a linear transformation from V into V.

10. Let V be the set of all complex numbers regarded as a vector space over the

L



