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Sec. 3.2 The Algebra of Linear Transformations

(cT)(de + B) = [T(da + B)]
= c[d(Ta) + TB]
= cd(Ta) + ¢(TB)
= d[c(Ta)] + ¢(TB)
= d[(cT)a] + (c¢T)B
which shows that (cT") is a linear transformation.

To verify that the set of linear transformations of ¥ into W (together
with these operations) is a vector Space, one must directly check each of
the conditions on the vector addition and scalar multiplication. We leave
the bulk of this to the reader, and content ourselves with this comment:
The zero vector in this space will be the zero transformation, which sends
every vector of V into the zero vector in W; each of the properties of the

two operations follows from the corresponding property of the operations
in the space W. | '

We should perhaps mention another way of looking at this theorem.

If one defines sum and scalar multiple as we did above, then the set of -

all functions from V into W becomes a vector space over the field F. This
has nothing to do with the fact that V is a vector space, only that V is a
non-empty set. When V is a vector space we can define a linear transforma-
tion from V into W, and Theorem 4 says that the linear transformations
are a subspace of the space of all functions from V into W.

We shall denote the space of linear transformations from V into W
by L(V, W). We remind the reader that L(V, W) is defined only when V
and W are vector spaces over the same field.

Theorem 5. Let V be an n-dimensional vector space over the field F,
and let W be an m-dimensional vector space over K. Then the space L(V, W)
18 finite-dimensional and has dimension, mn.

Proof. Let
(B={al;---)aa} a'nd &’={ﬁ1,.--,ﬂm}

be ordered bases for V and W, respectively. For each pair of integers (p, g)

with 1<p<mand 1< q < n, we define a linear transformation Er.¢
from V into W by

0, if 73
Er:t(es) = {B;, i e g

= 0;of3,.
According to Theorem 1, there is a unique linear transformation from V
into W satisfying these conditions. The claim is that the mn transforma-

tioris £ form a basis for L(V, W). ,
« Let T’ be a linear transformation from V into W. Foreachj, 1 < JEn
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Then for each j U= 2 A, B79(a)
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=232 Apaafqﬂp
p q
= % Am’ﬂp
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= Ta;
and consequently U = T. Now (3-2) shows that the E?2 span L(V, W);

we must prove that they are independent. But this is clear from what
we did above; for, if the transformation

U=22 Aéqu'q
P q
is the zero transformation, then Ua; = 0 for each j, so
Z Amfﬂp =0
p=1
and the independence of the 8, implies that 4,; = 0 for every pandj. |

Theorem 6. Let V, W, and Z be vector spaces over the field F. Let T
be a lmea.r transformation from V into W and U a linear transformation
from W into Z. Then the composed function UT defined by (UT)(a) =
U(T()) is a linear transformation from V into Z,

Proof.

(UT)(ca + 8) = U[T(ca + )]
= U(cTa + T8)
= [U(Ta)] + U(TB)
= o(UT)(e) + (UT)(8).

. Definition,

: IfVisq e
V is a linear trap, clor space over the field T, g linear operator on

Sformation, from V inio v



Sec. 3.2 The Algebra of Linear Transformations

In the case of Theorem 6 when V = W = Z, so that U and T are
linear operators on the space V, we see that, the composition UT is again
a linear operator on V. Thus the space L(V, V) has a ‘multiplication’
defined on it by composition. In this case the operator T'U is also defined,
and one should note that in general UT  TU, ie, UT — TU = 0. We
should take special note of the fact that if T is a linear operator on V then
we can compose T' with T. We shall use the notation T? =TT, and in

general T =T ... T (n times) forn = 1,2, 3,.... We define T° = [ if
T 0. :

Lemma. Let V be g vector space over the field F; let U, Ty and T, be
linear operators on V; let ¢ be an element of F.
(a) IU = Ul = U: '

aﬂmn+nhﬁnﬁwmun+nm=Tm+nm
©) e(UTy) = (¢U)T; = U(eTy),

Proof. (a) This property of the identity function is obvious. We
have stated it here merely for emphasis.

(b) [U(T: + T)](@) = ULT: + T5)(@)]
[ U(T1a + Tza)
= U(Twa) + U(Tsa)
= (UT)(e) + (UTy)(a)
so that U(T1 + Tg) = UT1 + UTz Also

[(T1 + To)Ul(a) = (T, + Ty)(Ua)
= T'(Ua) + Ty(Ua)
= (TWU)(a) + (TyU)(a)
so that (T, + Ty)U = T,U + T,U. (The reader may note that the proofs
of these two distributive laws do not use the fact that T and T, are linear,
and the proof of the second one does not use the fact that U is linear either.)
(¢) We leave the proof of part (¢) to the reader. |

The contents of this lemma, and a portion of Theorem 5 tell us that
the vector space L(V, V), together with the com)

position operation, is
what is known as a linear algebra with identity. We shall discuss this in
Chapter 4.

ExaMPLE 8. If A is an m X n matrix with entrie
linear transformation T defined by T'(X)
Bisapxm matrix,
F»1 defined by U(Y)

s in F, we have the
= AX, from F»x into . Fmx1_ If
we have the linear transformation U from fpmxt in
= BY. The composition UT is easily described:
(UT)(X) = U(T(X))

U4X)

= B(4X)

= (BA)X.
‘left multiplication by the product matrix B4’

to

Thus U7 is
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Cha ,
v = 0, ie,, if the null space of 7' is {0}. Evident!y, Tis1:1 if_and only g p,
is non-singular. The extension of this remark is that non-singyla, lineal.
transformations are thoge which preserve linear independence,

Theorem 8. Let T be a linear transformation from V into W

2 T
T is non-singular f and only if T carries each linearly independeny mbsethi;
V onto a linearly independent subset of W.

Proof. First Suppose that T is non-singular. Let § be a ﬁllearly
independent subset of V. If %, - - -, o, are vectors in S, then the

: Vectorg
i P, linearly independent, ; for if

Cl(Tou) s + ck(Ta;;) =0
then

T(Clcu + --. + Ckak) =

and since T is non-singular

- 10 operator T is in what we might
call the reverse situation. If zf(z) = 0 for al] z, then f = 0. Thus T is non-
singular and it is possible to find

a left inverse for 7. For example if U is
the operation ‘remove the constant term anqg divide by 2’:

it ar) =atoz 4o 4 ogan
then U is a linear operator on V and UT = J . But T



Sec. 3.2 The Algebra of Linear Transformations

function in the range of T'U is in the range of T, which is the space of
poqumial functions f such that f(0) = 0.

ExawmrLE 12, Let F be a field and let T be the linear operator on F?
defined by
T(xy, 22) = (21 + 23, 71).
Then T is non-singular, because if T(z,, z;) = 0 we have

nL+zn=0
I = 0
S0 that_ 7 = Xy = 0. We also see that T is onto; for, let (z;,z:) be any
vector In F2. To show that (z), z;) is in the range of T we must find scalars
1, and x» such that
n+n=2
Iy =2
and the obvious solution is z; = 2zs, 23 = 2z; — 2z,. This last computation
gives us an explicit formula for 7-*, namely,
T(z1, 22) = (22,21 — 22).

We have seen in Example 11 that a linear transformation may be
non-singular without being onto and may be onto without being non-
singular. The present example illustrates an important case in which that
cannot happen.

Theorem 9. Let V and W be finite-dimensional vector spaces over the
ﬁeIdFsuchthatdimV=dimW.IfTisalinaartmnsfarmaﬁonfromVinto
W, the following are equivalent:

(i) T ts tnvertible.

(ii) T is non-singular.

(i11) Tisanto,thatis,ﬂwrangeofTisW.

Proof. Let n = dim V = dim W. From Theorem 2 we know that

rank (T) + nullity (T) = n.

Now T is non-singular if and only if nullity (T) = 0, and (since n = dim
W) the range of T is W if and only if rank (T) = n. Since the rank plus the
nullity is n, the nullity is O precisely when the rank is n. Therefore T is
non-singular if and only if T(V) = W. So, if either condition (ii) or (iii)
holds, the other is satisfied as well and 7 is invertible. [l

We eaution the reader not to apply Theorem 9 except in the presence
of finite-dimensionality and with dim V = dim W. Under the hypotheses
of Theorem 9, the conditions (i), (11), and (iii) are also equival(?nt to t!nese.

(IV) If {ah . an} ;,gbas:sfor V, then {Ta;, o ,Tan} zsabaszsfor

81
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We shet 0 proo thst ) (8, ond (£) e, (i) > (i), Suppoy
contains & . mvertible, T 1 :s for V. By Theore

(i) = (@)- i Tﬁzt {ag .+ -1 O it ba&: vectors in W, and iy
T is non-singular linearly independen’ ke basis for W, No o
{Tay, - - - ’.Ta"} =de Iso n, this set of vectors 18 & h that B |
the dimension of W13 8% T calars ay - - -1 0 SUC

i There &
be any vector in W
g o(Ter) + + ca(Tatn)

= T(aen + " + cactn)

of T. (iil) = (iv). We now assume thyy
basis for V, the vectors Tay, ... 7,

. 1 i all of W by assumption. Since the dimensiop,
zlf)a;; izh: :izgz n(,) frg;,t;:; i:lllllst be linearly independent, thatis, mu.&}t comprige
a basis f,or W. (iv) = (v). This requires 10 comment. (v) = (i). Suppose
there is some basis {a, . .., as} fOr V such that {Tay, ... ,_Ta,,} s s
basis for W. Since the Ta; span W, it is clear that the range of T'is all of .
If @ = ciay + *++ + Cactn I8 in the null space of T, then

T(oa + -+ + o) = 0
or o

a(Tar) + -+ + + ca(Tan) = 0

and since the Ta; are independent each ¢; = 0, and thus a = 0. We have
shown that the range of T'is W, and that T is non-singular, hence T is
invertible. '

The set of invertible linear operators on a space V, with the operation
of composition, provides a nice example of what is known in algebra as

a ‘group.’” Although we shall not have time to discuss groups irifanY detal,
we shall at least give the definition.

which shows that 8 is in the_ range
T is onto. If {au, .. ., a} 18 80Y

Definition. A group consists of the following.
1. A set G;

_ 2 A rule (or operation) which associates with each pair of elements ¥

Y in G an element xy in G in such g way that
Ei)) }t{}EyZ)'= (xY)z, for all %, y, and z in G (assocz'at'ivityj; e
ere1s an element e in G such that ex = xe = x, for every X" 3

() to each ; :
that xx—1 = x_.lxc =el:ment x in G there corresponds an element x~* 0 G st
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satisfies IT = TI for each T, and for an invertible T there is (by Theorem
7) an-invertible linear operator 7! such that 77-! = T-'T = I. Thus the
get of invertible linear operators on V, together with this operation, is a
group. The set of invertible n X n matrices with matrix multiplica-
tion as the operation is another example of a group. A group is called
commutative if it satisfies the condition zy = yz for each z and y. The
two examples we gave above are not commutative groups, in general. One
often writes the operation in a commutative group as (z,y%) =z + ¥,
rather than (z,y) = zy, and then uses the symbol 0 for the ‘identity’
element e. The set of vectors in a vector space, together with the operation
of vector addition, is a commutative group. A field can be described as a
set with two operations, called addition and multiplication, which is a
commutative group under addition, and in which the non-zero elements
form a commutative group under multiplication, with the distributive
law z(y + 2z) = zy + zz holding.

Exercises

1. Let T and U be the linear operators on R? defined by
T(zy, ) = (223,71) and U(zy, 22) = (24, 0).

(a) How would you describe T and U geometrically?
(b) Give rules like the ones defining T and U for each of the transformations
(U+1), UL, TU, T3 Us,

2. Let T be the (unique) linear operator on C* for which
Te =(1,0,t), Te=(0,11), Te&=(10).

Is T invertible?

3. Let T be the linear operator on R? defined by

T(zy, 22y 23) = (321, 21 — 23, 271 + 22 + 73).

Is T invertible? If so, find a rule for T! like the one which defines T'.

4. For the linear operator T’ of Exercise 3, prove that

(T*=D)(T -3I)=0.

5. Let C2%2 be the complex vector space of 2 X 2 matrices with complex entries.

"Let,
1 -1
i [—4 4‘]

and let T be the linear operator on C%? defined by T(4) = BA. What is the
rank of T'? Can you describe T?

6. Let T be a linear transformation from R? into R? and let U be a linear trans-
formation from R? into R®. Prove that the transformation UT is not invertible.
Generalize the theorem.

4 A




Chap. 3
1. Find two linear operators T and U on R? such that TU = 0 but UT 5

8. Let Vbe a vector space over the field F and T a linear operatoron V.If T =
what can you say about the relation of the range of T to the null space of T
G'xveanmmpleofalirmropemtorTonR’mchthat T*=0but T # 0.

9. Let T be a linear operator on the finite-dimensional space V. Suppose there
= a linear operator U on V such that TU = I. Prove that T is invertible and
U = T-% Give an example which shows that this is false when V is not finite-
dimensional. (Hint: Let T = D, the differentiation operator on the space of poly-
nomial funections.)

10. Let A bean m X n matrix with entries in F and let T be the linear transforma-
tion from P into P defined by T(X) = AX. Show that if m < n it may

happen that T is onto without being non-singular. Similarly, show that if m > n
we may have T non-singular but not onto.

11. Let V be a finite<dimensional vector space and let T be a linear operator on V.

Suppose that rank (T?) = rank (T). Prove that the range and null space of T are
disjoint, i.e., have only the zero vector in common.

12. Let p, m, and n be positive integers and F a field. Let V be the space of m X n

matrices over F and W the space of p X n matrices over F. Let Bbe a fixed p X m
matrix and let T be the linear transformation from V into W defined by
T(A) = BA. Prove that T is invertible if and only if p = m and B is an invertible
m X m matrix.

3.3. Isomorphism

If V and W are vector spaces over the field F, any one-one linear
transformation T of V onto W is called an isomorphism of V" onto W.
If there exists an isomorphism of V onto W, we say that V is isomorphic
to W.



