UNIT- I VECTOR FIELDS AND VECTOR SPACES

GAUSS DIVERGENCE THEOREM

Documented By Dr.S.AKILANDESWARI

Divergence Theorem Statement

The divergence theorem states that the surface integral of the normal component of a vector point function "F" over a closed surface "S" is equal to the volume integral of the divergence of F^* taken over the volume "V" enclosed by the surface S. Thus, the divergence theorem is symbolically denoted as:

 $\iint \sqrt{y} \cdot \nabla F^* \cdot dV = \iint sF^* \cdot \mathbf{n}^* \cdot dS$

Divergence Theorem Proof

The divergence theorem-proof is given as follows:

Assume that "S" be a closed surface and any line drawn parallel to coordinate axes cut S in almost two points. Let S_1 and S_2 be the surface at the top and bottom of S. These are represented by $z=f(x,y)$ and $z=\phi(x,y)$ respectively.

 $F^{\dagger} = F1i^{\dagger} + F2i^{\dagger} + F3k^{\dagger}$, then we have

∫∫∫∂F3∂zdV=∫∫∫∂F3∂zdxdydz

∬R[∫z=f(x,y)z=Φ(x,y)∂F3∂z]dxdy

 $\iint R[F3(x,y,z)]z=f(x,y)z=\Phi(x,y)dxdy$

∬R[F3(x,y,f)−F3(x,y,Φ)]dxdy ——(1)

So, for the upper surface S_2 ,

 $dydx = cosy2dS = k²$.n2 \rightarrow dS

Since the normal vector n_2 to S_2 makes an acute angle γ 2 with k^{γ} vector,

 $dx dy = -cos\gamma 2dS1 = -k^3 \cdot n^3 \cdot dS1$

Since the normal vector n_1 to S₁ makes an obtuse angle γ 1 with k^{\rightarrow} vector, then

 \iint RF3(x,y,z)dxdy= \iint s2F3k[→] .n2→dS2 —-(2)

 $\iint \text{RF3}(x,y,\Phi) dx dy = \iint \text{s1F3k}^3 \cdot n1 \rightarrow dS1$ —-(3)

Now, the expression (1) can be written as:

 \iint RF3(x,y,z)dxdy– \iint RF3(x,y, Φ)dxdy —-(4)

Now, substitute (2) and (3) in (4)

 $\iint s2F3k^3$.n2→dS2- $\iint s1F3k^3$.n1→dS1

Thus, the above expression can be written as,

 $\int \int sF3k^3 \cdot n^3 dS$

Similarly, projecting the surface S on the coordinate plane, we get ∫∫∫∂F3∂zdV=∫∫F3k⃗ .n⃗ dS

∫∫∫∂F2∂ydV=∫∫F2j⃗ .n⃗ dS

∫∫∫∂F1∂xdV=∫∫F1i⃗ .n⃗ dS

Now, add the above all three equations, we get: ∬v∫[∂F1∂x+∂F2∂y+∂F3∂z]dV=∬s[F1i⃗ +F2j⃗ +F3k⃗].n⃗ .dS

Thus, the divergence theorem can be written as: $\iint \sqrt{F} \cdot dV = \iint sF$ ² .n³ .dS

Hence, proved.

 \mathcal{L}^{\pm}