UNIT- I VECTOR FIELDS AND VECTOR SPACES

GAUSS DIVERGENCE THEOREM

Documented By Dr.S.AKILANDESWARI

Divergence Theorem Statement

The divergence theorem states that the surface integral of the normal component of a vector point function "F" over a closed surface "S" is equal to the volume integral of the divergence of F^{2} taken over the volume "V" enclosed by the surface S. Thus, the divergence theorem is symbolically denoted as:

 $\iint v \nabla F \cdot dV = \iint s F \cdot n \cdot dS$

Divergence Theorem Proof

The divergence theorem-proof is given as follows:

Assume that "S" be a closed surface and any line drawn parallel to coordinate axes cut S in almost two points. Let S_1 and S_2 be the surface at the top and bottom of S. These are represented by z=f(x,y) and $z=\phi(x,y)$ respectively.

 $\vec{F}=F1\vec{i}+F2\vec{j}+F3\vec{k}$, then we have

 $\iiint \partial F3 \partial z dV = \iiint \partial F3 \partial z dx dy dz$

 $\iint R[\int z = f(x,y)z = \Phi(x,y)\partial F3\partial z]dxdy$

 $\iint R[F3(x,y,z)]z=f(x,y)z=\Phi(x,y)dxdy$

 $\iint R[F3(x,y,f)-F3(x,y,\Phi)]dxdy ----(1)$

So, for the upper surface S_2 ,

 $dydx=cos\gamma 2dS=k^{\rightarrow}.n2\rightarrow dS$

Since the normal vector \mathbf{n}_2 to S_2 makes an acute angle $\gamma 2$ with \vec{k} vector,

 $dxdy=-\cos\gamma 2dS1=-\vec{k}\cdot\vec{n}\cdot dS1$

Since the normal vector $\bm{n_1}$ to S_1 makes an obtuse angle $\gamma 1$ with $\vec{k^{*}}$ vector, then

 $\iint RF3(x,y,z)dxdy = \iint s2F3k^{\rightarrow} .n2 \rightarrow dS2 ---(2)$

 $\iint RF3(x,y,\Phi)dxdy = \iint s1F3k^{\rightarrow} .n1 \rightarrow dS1 ---(3)$

Now, the expression (1) can be written as:

 $\iint RF3(x,y,z)dxdy - \iint RF3(x,y,\Phi)dxdy ---(4)$

Now, substitute (2) and (3) in (4)

 $\iint s2F3k^{\rightarrow}.n2 \rightarrow dS2 - \iint s1F3k^{\rightarrow}.n1 \rightarrow dS1$

Thus, the above expression can be written as,

∬sF3k⁻.n⁻ dS

Similarly, projecting the surface S on the coordinate plane, we get $\iiint \partial F3 \partial z dV = \iint F3k^{2} \cdot n^{2} dS$

 $\iiint \partial F2 \partial y dV = \oiint F2j^{-}.n^{-} dS$

 $\iiint \partial F1 \partial x dV = \oiint F1 \vec{i} \cdot \vec{n} dS$

Now, add the above all three equations, we get: $\iint v \int [\partial F1 \partial x + \partial F2 \partial y + \partial F3 \partial z] dV = \iint s [F1i^{2} + F2j^{2} + F3k^{2}] \cdot n^{2} \cdot dS$

Thus, the divergence theorem can be written as: $\iint v \int \nabla F^{\dagger} . dV = \iint s F^{\dagger} . n^{\dagger} . dS$

Hence, proved.

.