# **UNIT- I VECTOR FIELDS AND VECTOR SPACES**

## **GREEN'S THEOREM**

### **Documented By Dr.S.AKILANDESWARI**

#### Green's Theorem Statement

Let C be the positively oriented, smooth, and simple closed curve in a plane, and D be the region bounded by the C. If L and M are the functions of (x, y) defined on the open region, containing D and have continuous partial derivatives, then the Green's theorem is stated as

#### $\oint C(Ldx+Mdy) = \iint D(\partial M \partial x - \partial L \partial x) dxdy$

Where the path integral is traversed counterclockwise along with C.

### Green's Theorem Proof

The proof of Green's theorem is given here. As per the statement, L and M are the functions of (x,y) defined on the open region, containing D and have continuous partial derivatives. So based on this we need to prove:

To prove: 
$$\oint_C (Ldx + Mdy) = \iint_D (rac{\partial M}{\partial x} - rac{\partial L}{\partial x}) dx dy$$

Proof:

From the given diagram, we get

$$\oint_c L dx = \iint_D (-\frac{\partial L}{\partial y}) dA$$
 .....(1)

and

$$\oint_c M dy = \iint_D (rac{\partial M}{\partial x}) dA$$
 ....(2)

Here, the green's theorem is proved in the first case.

The given diagram has the D region

 $D = \{(x,y) \mid a \le x \le b, g1(x) \le y \le g2(x)\}$ 

Here, g1 and g2 are continuous functions on [a, b].



Now, calculate the double integral in (1)

$$\int \!\!\!\int_D \frac{\partial L}{\partial y} dA = \int_a^b \int_{g_1(x)}^{g_2(x)} \frac{\partial L}{\partial y}(x,y) dy dx \ = \int_a^b \left\{ L(x,g_2(x)) - L(x,g_1(x)) \right\} dx.$$

Now, calculate the line integral (I). From the diagram, C is written as  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ .

With C1,

$$\int_{c_1} L(x,y) dx = \int_a^b L(x,g1(x)) dx$$
 ......(3)

With C<sub>3</sub>,

$$\int_{c_3}L(x,y)dx=-\int_{-c_3}L(x,y)dx$$
== $-\int_a^bL(x,g2(x))dx$ 

Therefore,  $C_3$  goes in the negative direction from b to a

Now, C2 and C4

$$\int_{C_4}L(x,y)\,dx=\int_{C_2}L(x,y)\,dx=0.$$

Therefore,

 $\int_C Ldx = \int_{c_1} L(x,y)dx + \int_{c_2} L(x,y)dx + \int_{c_3} L(x,y)dx + \int_{c_4} L(x,y)dx$ Therefore, the above expression is equal to

$$=\int_{a}^{b}L(x,g_{1}(x))\,dx-\int_{a}^{b}L(x,g_{2}(x))\,dx$$

Therefore, by combining (3) and (4), we get (1)

Hence, Proved.