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8.11. The Wave Equation

. ) A ) jons.
is one of the most important applications of Maxwell’s equat

. f Maxwell’s equations. Th;
We shall now derive the equations for electromagnetiC waves be the use O qua S. Thig

. ili and conductivity g:
Let us consider a uniform linear medium having permitivity £, permeablllty v Y ©; but

. ’ . Then
not any charge or any current other than that determined by Ohm’s law

D=eE;B=uH;J=GE and p = 0.
So the Maxwell’s equations :

divD = p W
divB =0
B |
culE = - T
oD
and : curlH =] +_a_t—
in this case take the form
divE =0
divH =0
curl E =—u%}—:
and cur1H=0‘E+e%I;£

Taking curl of equation (5), we get

curl curl E

0
A =-U 7 (curl H)
Substituting curl H from equation (6), we get

curlcﬁrlE =-un -aa—t LO'E + € @-

t
curl curl E = =~ GCuL %E - el ili
: smlmly, if we tak¢ the curl of equation (6) and sixbstitute E frome -

quation (5), we obtain
curlcurl H = — gy H _ el _azﬂ
ot 37

- Les
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Now using vector identity
. curl curl A = prad div A ,_JV2A
and keeping in view cquations (3) ; e div I : ‘
form l S () and (4) (ie., divE = 0 and div H = 0) ; equation (7) and (8) take the
2 2
ot 3
2
and VH - g ;e §5
WS- e 7= 0. ..(10)

Equations (9) and (10) represent wave cquations which govern the electromagnetic field in a homogeneous,
lincar medium in which the charge densit

b wever ot b y is zero; whether this medium is conducting or non-conducting.
owever, 1L 1s not enough that these equations be satisfied; Maxwell’s equations must also be satisfied. It is
clear that equations (9) and (10) are conse

il : quence of Maxwell’s equations; but the converse is not true. Now
lhc' problem is to solve wave equations (9) and (10) in such a manner the Maxwell’s equations are also
sallsﬁed. One method that works very well for monochromatic wave (i.e. waves characterised by a single

frequency) is to obtain a solution for E. Then curl E will give time derivative of B [since curl E = - %?-)
so that B can be computed.

It is more convenient to use the method of complex variable analysis for the solution of wave

equations. The time dependence of the field (for certainty we take'vector E) is takento be e im', so that
E(r,f) = Es(r)e ™ (1)
It may be noted that the physical electric field is obtained by taking the real part of (11) : furthermore Eg (r)
is in general complex so that the actual clectric field is proportional to cos (0 + ¢), where ¢ is phase of
E; (r). Using equation (11), equation (9) (droping common factor e 'm’) gives
that _ VzEs + 'mzeu Es+ 0oL Eg = 0 .(12)
Here the spatial electric ficld Eg depends on the space co-ordinates i.e.
Eg = Eg ().

“For plane electromagnetic waves it is convenient to put

Es = Epe*"
where k is the propagation wave vector defined as
k = 2—{5 n= %)— n, n being unit vector along k
and r is position vector from origin, v is the phase velocity of the wave,
With this in mind, equation (11) may be written as

CE(ryf) = Egé T .(13)

'-Hcr‘e.Eo is complex amplitude and is constant in space and time. It is important to note that when field

Vector is in form (13), i.e. operation of grad, div and curl on field vector is equivalent to
' ‘ grad = lk; div=V.-ik.;curl =V x = ik X
d .
Also T (0. :
Now we ‘sh_all cgﬁnside various cases of interest to determine field vectors E and H in electromagnetic ﬁ°,‘1;__d~~
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8.12. Plane Electromagnetic Waves in Free Space.

Maxwell's equaitons are

divD =V.D =p
divB=V-aB=0 B = uH
B —
= — and D = €E (1
curl E 3’3 f T = oE )
D
and cul H=J + ~ J
Free space is characterised by
p=0,0=0p= uoande—eo +(2)
Tbcreforc Maxwell's equations reduce to ‘ N
divE =0 ...(a)
divH =0 ..(b)
oo g H
curlE = — aat ..(C) r . ..(3)
and curl H = g %E () |
= = ! J
Taking curl of equation 3(c), we get - |
’ curlcurlE = —y = 8 (curl H)
Substltutmg curl H from [3(d)], we get
curlcurl E = po L} £ oL
. dt o | -
o : 2 : ‘
Le. i curlcurl E = — ¢, 88_123 ..(4)
£y | | Hoo =
Now - | : curlcurl E = grad div E - V’E :
g curl curl E = - V’E [since div E = 0 from 3(a)]
.~ Making this substttutxon equation (4) becomes
8 E
| VE - hoe 7 =0 5
: Now takmg curl of cquauon [3(d)] we get
| - : it curlcurl H = g = a (curl E)
G Substituting curl from [3(c)], we get
curlcurl H = ant[ _MF{J“‘“OEOT .(6)

: Ag am usmg xdenuty curl curl H = grad div H - V*H and noting that div H

' curl curl H = ~ V2,
iy Makmg thxs substmmon in equaﬂon (6) we gct '

= 0 from [3(b)], we obtain
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2
VH ~ e, 28 _ g e
i 5y and (7 ot :
Equations (3) and (7) represent wave equations governing electromagnetic fields E and H in free space. It
may be noted .that these ¢auations-may be obtained by using (2) in equations (9) and (10) of preceding
section. Equations (5) and (7) are vector equations of identical form which means that each of the six
components of E and H separately satisfies the same scalar wave equation of the form

2
ViU~ g, == ..(8)

where u is a scalar and can stand for one of the components of E and H. It is obvious that equation (8)
resembles with the general wave equation

2
Ju .(9)

where v is the velocity of wave.

Comparing (8) and (9), we see that the field vectors E and H are propagated in free space as waves at
a speed equal to

D= V“:J_EO Since oy = 41 X 10~ 7 weber/Amp-m

]

8-542 x 4012 farad/m

—\/ 47 \\
[ uo.4naoJ e
- ‘\/(———-—4“ — x 9 x 109] |

4 x 10
=3 x 10°m7sec = ¢, the speed of light.

€

' Sothat—— = 9 x 10° m/farad.
4ney

h Therefore it is reasonable to write ¢ the speed of light in place of Vut—so-; so equations (5) and (7) take the

form
2. 1 F
VE - a—t'j =0 : .(10)
2
VH - % %‘21 =0 (1D
l aZ.
and Vi - 3 }',',25 =0 - (12)

Now let us find the solution of above equations for plane electromagnetic waves. A plane wave is defined
as a wave whose amplitude is the same at any point in a plane perpendicular to a specified direction.
The plane wave solutions of above equations in well known form may be written as

E(r, 1) = Ee " (13)
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N
Hr, o= Hpe "1 (14)

ik.r—iof ..(15)

w(r,1) =dge | |
. and time while k is a wave

W\ ' -
where E,, Hy and 1, are complex amplitudes which are constant in space

propagation vector denoted as

\ Vv [0)
k=kn-=%€En=--——216c n=;n -(16)
Here n is a unit vector in the direction of wave propagation. Now in order to apply the conditions V

andV.H = 0,letus first find V- Eand V- H.
ik.r—iot
J'Eoe

.
)' [(?EOX +fE0y + 72 EOZ) €

=0

]
V‘E=[,‘ax“ay+’?az
P 0D 4 d
(127212

ox

i (kex+ kyy+ kz)— t'OJt]

[since ker = @k, +/k+k k) Cx+]y+E2)
= lhxtky+kg]
(g iky + Eqy ik, Ey) €

= i (koEq, + K Eoy + k.Eg,) €
i (? k, +j'\ky +k k,) (fEO, +ony +& Ey)e

=ik.-Epge XTI _ kLB
- Similarly : V.-H=ik-H
* Thus the requirements V-E = 0and V. H = 0 demand that
keE=0and k-H=0 . .(17)
This means that electromagnetic field vectors E and H are both perpendicular to the direction of

propagation vector k. This implies that electromagnetic waves are transverse in character. Further
Iestrictions are provided by curl equations (3c) and 3(d) viz.

V.E tk.r—ior

ik.-r-iont

ik.r—iot

(;urlE=-uo%I;! and curlH=eO%3-
-~ using equations (13) and (14), above equations yield '

S S s B ik X E = -y (-ioH) or k x E = gyoH ° ..(18)
and - ik X H=¢g-(-ioE) or k x H = —gQE., .(19)

.

From_equaﬁon (18) it is obvious that field vector H is perpendicular to both k and E and according to
cquauon.(IQ) E perpendicular to both k and H. This simply means that field vectors E and H are mutually
perpendicular and also they are also perpendicular to the direction of propagation of wave. This all in turn

implics that in a plane electromggnetic wave, vectors (E, H, k) form a set of orthogonal vectors which form
aright handed co-ordinate system in tha order (fig. 8.2), :

- Further from equation (18).
S e 1 v
3 H= m (k X E) = Il—o-ﬂ_) (n X E) (since k = &n)
i 1
oo (n X E) .(20)
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This equation in term of modulj
H=—E

1

Now the ratio of magnitude of E tg ] :
; . 1C magnitu i
symbolised as Z; i.e. gnitude of H is

( since

E E
Z() = ! T ] = |2 = - {“0
. H Hoc = \/ =
Hy &
; |
since ¢ =
[snee ¢ = e
_ —\/ 4n x 1077
" V| ggs x 10712 | = 2766 ohms ~(21)

where the units of Z; are most easily seen from the fact
that it measures a ratio of E in volt/m to H in amp-turn/m
and therefore must equal volt/amp or Ohms. Because the
units of £/H are the same as those of impedance, the value
of Zy is often referred to as the wave impedance of free

H

space. Further since the ratio Z, = is real and

Fig. 8.2

positive ; this implies that field vectors E and H are in the same phase i.e. they have the same relative

magnitude at all points at all times (fig. 8.2).

3 3 . . . .
The Poynting vector (i.e. energy flow per unit area per unit time) for a plane electromagnetic

wave is given by
S=ExXxH=E X

1
HoC
1

].loC

E2

= -Z; n
For a plane‘ electromag
given by il

n

X E
Uoc

using (20)

£

ExmxE)= Il%); [(E-E)n—-(E-n)E]

(since E +n = 0, E being prependicular to n)

[refer equation (21)]

netic wave of angular frequency ®, the average value of S over a complete cycle is

<S>=—1—<Ez>n
Zy
R 2
1 kor—iwt
=Z<[Eoe‘- T )>n'a!n
g 2‘; E <cos’ (@t=k-1)>n
2
=-—l—Eg—n [since(cosz<wt—k‘r)>=%]
Zy 2
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= 21; Er%ns n (22)
I . _ ED
[smce E o= Fz'

It is obvious that the direction of Poynting vector is along the direction of propagation of electromagnetic

* - . a -
wave. This means that the flow of energy in a plane electromagnetic wave in free space is along the
direction of wave. '

‘Ratio of Electrostatic and magaetic energy densities is given by

Ug l280E‘2 ) El €p _u__Q = 1. (23)

i.e. the electromagnetic energy density is equal to magnetostatic energy density. Total electromagnetic
energy density

—_— —— —
— — ——

u=u,+um=2u,=’2,>-<%e{;,E2=€oE2
Time average of energy density

<u> =<ggE > = < (Eoe'k'r_'mt)2>mz
: 2
= go Eg <cos’ (t—k-1)> = %EOE(;Z = g Ems (24)
.Dividing (22) by (24), we obtain
' <S> 1 1 n
- ‘n = n= =cn ..(25)
<up  Zog M) VHe€o

Thus we obtain _ :

<S>=<u>cn ..(26a)

e i s ) energy flux = energy density X c.. ...(26b)
K«This'.eqhation implies that the energy density associated with an electromagnetic wave in free space
. propagates with:the speed of light withwhich the field vectors do. Y

'Summarising we may say for electromagnetic waves in free space that :
~ 1.1In free space the electromagnetic waves travel with the speed of light.
2. The electromagnetic field vectors E and H are mutually perpendicular and they are also

p'e'rpcndicular‘ to the direction of propagation of electromagnetic waves. Thereby indicating the
~ electromagnetic waves are transverse in nature.

- 3. The field vectors E and H are in same phase.

4. The direction of flow of electromagnetic energy is along the direction of wave propagation and the
~ energy flow per unit area per second is represented by :
\ : : 2

<8§>=—"n=<u>cn

Z

5. The electrostatic energy density is equal to the magnetic energy density and the energy density
associated with the clectromavgnetic wave in free space propagates with the speed of light.
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) i 1000 g s ]”“0 — = (1297 amp-turn/m.

lon E 161 x 4887
/8 14. Plane Electromagnetic Waves in a Non- conductmg Isotropic medium. (i.e. Isotropic
Dielectric)

A non-conducting medium which has same propetties in all directions is called an isotropic dielectric.

N

Maxwell's equations are
di\r D ] V . D = p
0

divB=V+B =
curlE =V X E = —aaB ‘ -(7)
t
and curl H = V:-(H-—J+%lt2

J

In an isotropic dielectric (or non-conducting isotropic medium)
D=¢EB=pH,J=cE=0and p=0

Therefore Maxwell’s equations in this case take the form

dvE=VeE=0 ..(a))]
divH=VeH=0 ...(b)
and curlE = —uaa? “udlE)h
| 3E
curl H.= ¢ 7 ...(fj)J

Taking curl of equation (2c), we get
curlcurl E = — u%(curl H)

Substituting curl H from (2d) in above equation
: Jd(_dE
curlcurl E = —pat[ 5 J

’E .0

B PRt : curl curlE =—pe —-
or

S:mxlarly xf we take curl of (2d) and subsmutc curl E from (2c¢), we get

curlcurl H = — e aaz? ()

, ,using,yccior identity_. :
curl curl A = grad div A-V? A

£ and kccpmg, in mind equauons (2a) and (2b) i.e., divE = Oand div H=0 equations (3) and (4) give

V E - e —————a L =0 )

_ , - ar
Tl SRR R OH
and 2 S VHepe
: : ‘ i o > I E)t2

0

N
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These equations are vector equations of identical form which means that cach of the six components of
E arid H separately satisfies the same scalar wave equation of the form

2 9'u :
V‘u_ue__z. =0 A7)
dt
where u is a scalar and can stand for any one of components of E and H. It is obvious that equation (6}
resembles with the general wave equation

...(8)

where v is the speed of wave.
This means that the field vector E and H are propagated in isotropic dielectric as waves with speed v
given by
D = 1 _ !
V(e) — V(K 1o K. €)
where Ky, is relative permeability of medium and K, is relative permittivity (or dielectric constant) of the

medium.

1 .
As T = ¢, speed of electromagnetic waves in free space.

2 ..(10)

U = V___—_
KmKe
Since K,,>1 and K,>1: thereby indicating that the speed of electromagnetic waves is an isotropic
dielectric is less than the speed of electromagnetic waves in free space.

As n=%<iev=" -(11)
v n
.. Comparing (10) and (11) we note that the refractive index n in this particular case is
n = NK,K,) _ --(12)
For a non-magnetic material K,, = 1 ; therefore
n=vK, ie. n° =K, (13)
This relation is known as Maxwell’s relation and has been verified by a number of experiments.
Replacing pLe by iz , wave equations (5) and (6) may be expressed as
v
2
vie- L 28 _, (14
v° ot
2
and VH - Lz 8_12{ =0 ~(135)
v° ot
The plane-wave solutions of equations (14) and (15) in well known from may be written as
E(rp) = Ege 77 (16)
H(r,0) = Hye' © 77 (17

where Eq and H, are complex amplitudes which are constant in space and time : while k is wave
Propagation vector given by
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h ...(lg)

AL . . .
Here 7 is a unit vector in the direction of wave propagation.
Relative directions of E and . The requirement V. E = 0and V- H = 0, demand that

keE=0 and k-H =0 (19)
Comparing (7) and (8), we see =
v (HE) (19&)

This 3 RO . C )
vy }ﬂca}ps that the ficld vector E and H are both perpendicular to the direction of propagation vector k,
s implies that electromagnetic waves in isotropic dielectric are transverse in nature Further restrictions

are pravided by curl equations (2c) and (2b) viz.

curlE = — (’%It{- and curlH = ¢ E)a_ItE
Using (16) and (17), these equations yield
k x E = ol .-.(20)
and k x H = — ¢oF (2D

From ii}c?se equations i-t is obvious that field vectors E and H are mutually perpendicular and also they are
p}er‘{?er. l‘cular to the. direction of propagation vector k. This in turn implies that in a plane electromagnetic
wave in isotropic dielectric, vector (E, H, k) from a set of orthogonal vectors which form a right handed
coordinate system in given order (fig. 8.2).

Phase of E and H and Wave Impedance. From equation (20)

_ 1 _ kA
H—um(kxE)— ~ (1 x E)

1l :
-1l _\/E A ,
= (X E)= \ . (@ xE) )

since k = 2 and v = =
( v V(ue) |

Now the ratio of magnitude of E to the magnitude of H is symbolised by Z i.e.

' E Ey '\/E : \/ Knlo
Z —] — = - = — b-—4 1
H H, e ( K & J real quantity -.(23)
This implies that the field vectors E and H are in the same phase, i.e., they have same relative magnitudes

at all points at all time. The unit of Z comes out to be ohm, since
E  volt/m  _ volt oh

Z = = = —
H amp-turn/m  amp
mpedance of isotropic dielectric medium. The wave impedance

.
’

hence the value of Z is referred to as wave i

- of medium is related to that of free space by the relation
: A / K, “ / K,
Z = ( Ho J = [—K— Zo] ...(24)

Ko

where Z; = Fo is called the wave impedance of free space.

Poynting vector for a plane electromagnetic wave in an’isotropic dielectric is given by

s=ExH=Ex[VﬁaxE]
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A nl
L Ex (i xE) since Z = \,H—
Z ~ Vg

- (E‘E);}-'-(E-n)E
Y/

E

. A B ‘
z (since E-n = 0 because E is perpendicular to r’;)

The time average of Poynting vector is

E* A

1 iker—ior Y A
7 < Eoe Zreal N

<S>

1]

Z
Since for finding actual physical fields we often take real parts of complex exponentials.

2 2 A
<8>=— E; <cos” (0t=k r)> n

58

NI—= NI= N|—=

: E,
E, . n (since Eps = «/—%] ...(252)

g2 n=2 L g2 .(25b)
0

[becuase refractive index n = ‘J(KeKm)]

...(25¢)

1 .2 A
because <S8 >free space = 2— Ems N

Equations (25a) and (25b), show that the flow of energy is along the direction of propaganon of

electromagnetic wave. Equation (25¢) shows that the Poynting vector for electromagnetic wave in isotropic

- dielectric is K or -~ times of the Poynting vector if the same electromagnetic wave were
Km Km
Pmpagated through free space. It may be noted that th

<S>=<ExH>= Realpartof(E x H)
ty. Let us ﬁnd the ratio of electrostatic and magnetostatic energy

e average of Poynting vector may also be obtained as

Power flow and Energy densi
densmes inan clectromagnctlc wave field i.e.

1 e B _ep
W, Ly MH K

1 (26)
€ ‘

T liem
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This implies that for the casc of clectromagnetic waves in an isotropic dielectric the electrostatic energy
Y

density (1) is equal to the magnetostatic energy density (i4,). P
Therefore total electromagnetic energy density
Ho= Uty = 20, (since U, = Uy) ' i
) ) .
= 2. -]-2 el = EEJ e

Thc.rplorc time average of energy density

11

. Y
2 2 ik.r—iwt
<u> =<tk > a<b>=e<(E0c ) e
g4

2 eby -
EE2 < coS (wt—k-r>=T

11

2
o e = € Epy (27)
Dividing equaion (23a) with equation (27), we obtain

2 A
<S>_(Emu"'/z)=_1_ﬁ:___ 2 1 since Z = \J%

<u> —' eEr%ns Zﬁ }'_I'_
V(E) e

1

A A ) _ 1
=Vﬁ'€-n—vn (Slncev—ﬁ)

Thus we obtain
' <S> =<u> on
or <S>, = Uy on ...(28a)
or in words energy flux = v X energy density. ...(28b)
This equation has a simple meaning. If the energy were flowing with velocity v (= phase velocity of
 electromagnetic wave with which electromagnetic field vectors propagate), in the direction of propagation
_of wave, all the energy contained* ~ a cylinder of unit cross-section and height equal to v would cross unit
cross-section per second, forming the flux. This in turn implies that the energy density associated with an
electromagnetic wave in a stationary homogeneous nonconducting medium propagates with the same speed

with which the field vectors do.

 Summarising we may say for the case of electromagnetic waves in isotropic dielectric that :

1.In isotiopic dielectric the electromagnetic waves travel with a speed less than the speed of light.

2. The electromagnetic field vectors E and H are mutually perpendicular and they are also
pﬁrpendicular to the direction of propagation of electromagnetic wave. Thereby indicating that
elg:ctro_magnctic waves are transverse in nature. :

3. The field vectors E and H are in the same phase.

4. The direction of flow of electromagnetic energy is along the direction of wave propagation and the

energy flow per unit area per second is represented as
2 A

Ernu- n A

<§> =‘_T =<u>un

" 5, The electrostatic energy density is equal to the magnetostatic energy density and t
~ density is given by

he total energy .

: 2
- <u> = eEp,.
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_,*‘8'/1 5. Plane Electromagnetic Waves in a Conducting Medium.

Maxwell's equations are

divD =V-D =p |

divB=V.B=20

curlE = — 9B | - (1)
ot

cul H =] +aa—?

Let us assume that medium is linear and isotropic and is characterised by permitivity €, permeability p and
conductivity G, but not any charge or any current other than that determined by Ohm’s law. Then

D =¢E,B=pH, J=cE and p = 0.
So that Maxwell’s equation (1) in this case take the form

divE =0 ...(a) |
divH=0 ...(b)

__, ‘ )
cul E = —H vy ...(c) } «(2)
cul H = O'E + € %—lf ..(d) |

Taking curl of eqqation [2(c)], we get
‘ culcurl E = —u a (curl H)
Subsututmg curl H from [2(d)], we get
lcurl E = 9 oE + ¢ L
curlcurl E = - at( BtJ
JE I E
- d.e. curl CUFI'E = - Ol Tl EQL 'é—tz— «(3)
Similarly, lf we take the curl of [2 (d)] and substitute curl E from [2 (c)], we obtain
oH O'H
curl curlH = — Ol = 5 - Eu E)rz (4

~ Now using vector idéntity
: Foh curl curl A = grad div A - VA

~and keeping in v1cw equallons [2(a)] and [2(b)] (i.e. divE = Oand divH = 0) equations (3) and (4) take
the form

13) 9°E
: VZE —Op 3T = e _é? =0 -(3)
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9'H ~+(6)

clectromagnetic ficlds E and H in a llomngincoug
gqpparcnt that these cquations are veclor equations of

- These equations represent wave cquaitons governin
ts of E and H separately satisfies the same scalar

isotropic conducting medium of conductivity o. It is
identical form; which means that cach of the six componen
wave equation of the form

2
k) Iy _ (7
Vzw_cu_aﬂt{ - 0 )

nd H.

where y is a scalar and can stand for any one of components of E a se ie. the field vectors B
In an isotropic dielectric we have seen that the time varying fields are transverse &«

: ot imit of zero frequenc
and H are perpendicular to the direction in which the spatial variation occurs. In thc limi N ,'md,'na??;r:;y
we know from electrostatics and magnetostatics that the static fields in a dielectric are long e

sense that the fields are derivable from scalar potentials and so point in the direction of spatial vanatmn.-
mplicity let us assume that the fields

If the conductivity is not zero, modifications are necessary. For si_ _ il and
vary in only one spatial variable x,, . Therefore decomposing the fields into longitudinal and transverse parts

E(xg,0 = E/(xg, )+ E (¥, 1) } (8)
H(xy,t) = H(xg, )+ H (xg, D

where subscript / and ¢ denoted longitudinal and transverse parts respectively. Then, because of properties

of curl operation, we find that the transverse parts of E and H satisfy the two curl equations [2(c)] and (2(b)]

: leading to transverse wave, while the longitudinal parts satisfy the equations :

From equation [2(a)] ) ?E—I = - [9(a)]
Xou
* From equation [2(b)] % =0 --[9(b)]
: o
- From equation 2] ' [% + %) E =0 ...[9(c)]
_ [since curl E; = curl grad ¢, = 0]
. : : oH
Fromequation [2(d)] =, =0 [9(0)]

[since curl H; = curl grad ¢; = 0]

Equation§ [?(c)], and [9((?)], show that the only longitudinal magnetic field is possible in a static uniform
ﬁeld_, This is the same situation as the case of a dielectric. But equations 9(a) and 9(c) show that the
longitudinal electric field is uniform in space, while possesses the time variation given by

d
( +%JEL=OI'.€.8—E—I=-—EEI

ot 81 €
ie. gt Y %, =-2 4
Integrating, we get -
‘ & : 1 = - E 3
o e A e L 0g £y e o log Ey  (where log Ej is constant of integration)
....‘ e S ' E o,f) = ~(o0/¢) i
’fe . Dot 1(@,1) = Eje .(10)
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sequently, no stati 1 iog d . — .
Consequently, ¢ electric fields can exist in a conducting medium in the absence of an applied

v, R . dore 1L .
current densify. 1 h good conductors like copper ; ¢ = 10/ mho/m, so that disturbances are damped out in
an extremely short time. _

Therefore we shall consider the transverse field in the conducting medium. Let us assume that the fields

vary as 1j kK.r- imr’ then solutions of equations (5), (6) and (7) may expressed as
E = Epo' KT io" (1)
H = H,¢ K7 (12)
= \Ijoeik-l‘—i(l)t (13)

where Kk is a wave vector, may be complex, while E,, Hp and , are complex amplitudes which are
constant in space and time.

Substituting value of y from (13) in eqn. (7), we obtain
(- K + IOQ + psmz) y = 0.
Since Y is arbitrary, therefore this equation holds only if
2, .

(- k" + iopw + uscf) = 0.

This means that the propagation wave vector k is complex given by
K = pew’ (1 + 9 e #)
(V3

In above equation the first term corresponds to the displacement current and the second to the conduction -
current contribution. As k is complex we may write assuming that ¢ is real.

k= o+iP | (1)
So that K = of - B*+2i0p. ..(16)
Comparing equation (14) and (16), we get X
2 2 .
o ~f = peo } ev)
and 208 = pwo
RV
i
e (a]]
o = Ve 5
- - > .(18)
) RV
V[ (2] -
=iz o| ——g |
Now in terms of o, and B, the field vectors E and H take the form
E = Eoei(a-{-[ﬂ)n.r-imt = Eoe—ﬁn-rei(au-r—(nt) (19)
aiid ' | H = Hoei(avi-iﬂ)nnr—imt _ Hoe—ﬂn-rei(un-r—mr) .(20)

- From equétions (19) and (20) it is obvious that field amplitudes are spatially attenuated due to the presence

~ of term ¢ PRer The quantity B is a measure of attenuation and is known as absorption coefficient. Also in
 last exponential terms in (19) and (20) the usual notation k has been replaced by o, therefore we conclude
' that the field vectors are propagated in the conducting medium with speed (v = w/k) given by
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\/{1 ¥ LOJ’} -l
©_ 1 — e AP A using (18) ...(21)

0 = — SO, SISO
‘ 44 Vpe 2

Now let us consider the form of propagation vector k = o + i} in the two particular cases :

s (¢}
Case (i) For a poor c‘nndmrrm'-(; << 1, then we get

View and B = \/% ~—S"

k=a+if = Juew + i % \/}é -(22)

This is correct to first order in 0/we. In this limit o0 >> {3 and the attenuation of wave determined by B is
independent of frequency, aside from the possible variation of conductivity.

Case (ii) For a good conductor 6/we >> I, so that o and P are approximately equal i.c.

k=oa+if = (1 +,'_) = \/“(2’—“’ , ..(24)

- where only lowest order term in we/G have been kept.

Skin Depth or Penetration Depth. The waves given by equation (19) & (20) show an exponential
damping or attenuation with distance. Greater is the valuc of B, greater is the attenuation. The term 1/
measures, the depth at which electromagnetic wave entering a conductor is damped to 1/¢ = 0-369. of its
initial amplitude at the surface. This depth is known as the skin depth or the penetration depth and is usually

represented by §,
'\/{1 + (——G ]} 2 _

8 = —1- = 1 o 7%-1)

B m;lue : 2 el e

= \/—2— [ for good conductors characterised by = << l} (25b)
Lo® WE

It is obvious that the skin depth decreases with increasing frequency. For copper at 60 cycles 0 is 0-86 cm,
but at 1 megacycle, it has dropped to 0-0067. That is why in high frequency circuits current flows only on
the surface of the conductors. The major importance of the skin depth is that it measures the depth to which
an electromagnetic wave can penetrate a conducting medium. Therefore, the conducting sheets which are
used as electromagnetic shields must be thicker than the skin depth.

R
Il

-1/2

A o 7 ; : a8 :
Remarks (i) For silver o = 10’ mho/m at a typical microwave frequency = 10° ¢/s, the skin depth
g4 A . . oy .

=10 " cm. Thus at microwave frequencies the skin depth in silver is very small and consequently
performance of a pure silver component and a silver plated brass component would be expected to be
indistinguishable, : ‘
. (i) For see water ¢ = 4:3 mho/m at a frequency of 60 ke/s ¢ so that & = 1 meter. That is why
radiocommunication with submerged submarine becomes increasing difficult at several skin depths.
~ Relative directions of E and H. Substituting E and H from (I 1) and (12) in Maxwell’s divergence
equation, we obtain L ' |
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KB =0 or keF =0 ..(26)

o tk-=0 o k-H=0 -(27)

These cquations imply that ficld vectors £ and H are both perpendicular to the direction of propagation

veetor k. This implics that electromagnetic wave in a conducting medium is transverse. Further restrictions
on E and H s imposed by curl equations. Using (11) and (12) curl cquations demand

Tk X E = juoH ie. k x E = poH (28)
and ik X H=(0-iew)E ie. k x H'= - (ew+ic) E .(29)

These equations imply that electromagnetic ficld vectors E and H are mutually perpendicular and also they
are perpendicular to the direction of propagation vector k.
Phase of E and H. From equation (28) - 9

1 1 ==
I‘I = i) = — K~ ‘4
ne (k X E) e k (n X E)

- HL(D (@+iB) (n X E) .(29)
This implics that l % l = % = o+i = C()mplex quantity ...(30)
D, 0

i.e. field vectors H and E are out of phase in a conductor. The magnitude and phase of complex , written
i :
ask = 1kle® , may be defined as

21172
Ik|=|0t+iBI=\f(cx‘+[_’>2) xxlpew{lJr(fé]] ..(31)
and b = tan” ' (E] = % tan” {—0—] ..(32)
o 2 e

so equation (29) may be expressed as

I 02_'/4 i0
_umw pa[]f(“w}] e’ (n x E)

2 .
=V [1 + (gj TZ e P (n x E) .(33)

i We
This interpretation of this equation is that H lags behind E in time by the phase angle ¢ given by equation
. H

(32) and has a relative magnitude
2174
it VE |1+ (= .(34)
E E, Ul L we

Poynting Vector. The Poynting vector is given by
: S = (E x H)
the time average of Poynting vector may expressed as

S = 3 Real partof (E x H) =1Re(E x H)

where H' (denotes complex conjugate of H and Re denotes real part of.
SR 12

’\,-E— (l+~g—]} e_i("’an*}
M e

. 2 4174 )
[1 + (EGEH Re {E x (n x E)e ™)

Spp =

-

Re | E X

A
H

N -

Scanned with CamScanner



[1 + (_0_)2]1/4Re [{E-EYn)-(E-mE) "
we

u
‘ﬁ [(1 + 2‘)2]1/4 Eoze—zﬁn'r n cos ¢ +(33)

e

I
|-

[Since (E-E") = Eg ¢ 2Bn-rand Re (6™ = cos ¢]

_ E,
For good conductors o/em >> 1 so that ¢ = /4 and also E,p = 72_ hence.

=V e

Energy density. The total energy density of electromagnetic field is given by

U= u,+u,
where electrostatic energy u, = %Re% (E-D)
=leRe(E-E)
_Leg s2PRT T
= LeE2, S 2Bmer .(37b)
and magnetic energy density Uy = % Re 3 (H- B')
= -‘4- L Re (H-H)
= % m H2 -2Bn.r
2.1/2
1. £ o 2 =2fn.r
—Zuu{l+(0)e]} Eo
[using (34)]
=iefis o Y1 g2 280
4 X0
2172
T )
= [1 o+ (8_0)) ] u, ..(38)
, [using (37a)]
. Total energy density u = u,+u, = u. +11 + (fca } u,
: ) J
2412
=[1 +{1 +(_Q'_)}] u,
€W
s 2\ q1/2
O -
=[1»+{1+(5)}] X %eE,f,ue 2fm.r ..(39)

From equations (36) and (39) it is obvious that the energy flux and energy. density are damped as the
electromagnetic wave propagates in a conducting medium. This energy lose is due to Joule heating of the
edium. From equations (37) and (38) it is also obvious that in a conducting medium the electrostatic and
petic energy densities are different ; the magnetic energy density being greater than electrostatic
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9.2. Reflection and Refraction of Electromagnetic Waves at the Interface of
- Non-conducting Media.

; ia of dif ielectric
The reflection and refraction of light at a plane suiface between two media of different diele

i of Vi ’es 1nto two
properties are familiar phenomenon. The various aspects of the phenomenon divide themselves i
categories : : i
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1. Kinematic Properties. _ ) F = 8 )
; = 0; where 9.
(i) Law of reflection. The angle of reflection is equal to the angle of incidence i.e. 6, ! e 8 is

angle of incidence and €', is angle of reflection,
(i) Snell’s law of refraction states.
sin@; n
5in®,  n o
where 6; and 6, arc the angles of incidence and refraction ; while n, and n, are corresponding indices of

refraction. f
- (iii) Law of frequency. The incident, reflected and refracted waves all have the same frequency.

2. Dynamic Properties. These properties are concerned with :

(i) intensities of reflected and refracted waves.

(i1) phase changes and polarisation.

The kinematic properties follow immediately from the
Wave nature of the phenomenon and the fact that there are zy
certain boundary conditions imposed on field vectors to be
satisfied. But they do not depend on the nature of waves or the
boundary conditions. On the other hand, the dynamic
properties  depend entirely on the specific nature of

- electromagnetic field and their boundary conditions.

Let us consider a plane interface at Z = 0 separating two
homogeneous, chargefree and non-conducting isotropic media,
characterised by permittivities €; and ¢, ; permeabilities K and
H respectively as shown in fig. 9.3. Let a plane wave with

- Wave vector k; and frequency o, be incident from medium ‘7
. at point O on the interface. This wave js partly reflected and
= partly transmitted (or refracted). Let the reflected and refracted Fig. 9.3 Reflection and refraction
waves have wave vectors K’} and k,, frequencies o’y and @,
~ Tespectively. Also let n be the unit vector normal to the interface and directed from medjum ‘1’ into
medium ‘2°. The field vectors for incident reflected and refracted waves may be expressed as

e iky-r—im;
- Forincident wave E| = Ey; " 4

k, x E Ky X (1
B, = — ~ or H; = By ( )
, -0 Tl
For reflected wave E'| =FEqy ¢ k' r-ior .
ki’ x E/ ’ ’
B’] A 1 , 1 or Hl, N kl X }’31 .(2)
0 1@,
For refracted wave E, = Ey; ¢ kv~ it
B £ k; X E (3
“, Ha,

At NOtc.:. "I_‘he cause of notation used above may be understood gg - Incident and reflected wave are in
- medium ‘T, hence incident wave has been characterised by symbol I (unprimed), while reflected wave has

béprj' represented by symbol] | (primed). The refracted wave is in medium ‘2’ hence it has been represented

¥ symbol 2.
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We can apply the boundary condition (iii) derived in preceding section namely that the tangential
component of the electric field is continuous across the interface between the media (ie. at z = 0). In this
case at every point in the interface

(El)nln;:mm/! + (El)’runwnn'ul = \,E,!)/m:gmliul {4)

- iky.r—ime ik r-int
or (E()l)mngcn.'ml ¢ + (E()i')lungumul e ! I

= (E()?_)mn.'u’miu! ("'l kl o’ ¢ ‘“‘)zf
ie. 7 (EOI)mngcmiul el kl T (.’_ IU}I + (E()I')mn.r;('mial (I! kl 3 elwl’t
’ a= (EOZ)tan;;cmiul el kz N (,’_ -
Since this equality is independent of time, it immediately follows that
O = 0 = 0; = o(say).
That is the incident, reflected and refracted waves all have the same frequency.
Since equation (5) holds for all points of the interface (z = 0), we msut have
(kl 'r)z'—-O = (kl"r)z=0 = (kZ'r)z=0' A7)
This equation is independent of the nature of the boundary conditions and contain the kinematic aspects of
reflection and refraction.

Writting equation (7) is somewhat expanded from i.e.

~(3)

kx+kyy = K2+ Ky = kpx+kyy ..(8)
we get
klx = k,lx = I‘Z}. (a) } (9)
kh‘ = kll). = kz\, (b)

Since incident beam is in XZ plane k;, = 0, therefore equation (9) implies k', y = kyy = 0, that is both k,’
and k; also lie in XZ plane. As normal n is along Z axis, thus we conclude that all the three wave vectors
and normal to the interface n all lie in the same plane. In other words the incident, reflected; refracted
waves and the normal to the interface all lie in the same plane.

Furthermore fig. 9.3, we get

Ki-r = k; (xsin6;+zcos 6, ...(aF
k/-r = k' (xsin 0, —zcos0,) ...(b) ..(10)
kyer = k; (xsin6,—zcos 6,) ..(¢)

Substitution values from (10a) and (10b) in equation (7) viz.
(ky+r);=0 = (ki *1),=0

we get
: kixsin®; = k" xsin 0,
or ky sin 9,: = k)’ sin0,/ (11D
Since wave vector k, and k,” lie in the same medium, hence k; = k"= @ V(1,,g,) = (w/v,) v, , being phase
velocity of electromagnetic wave in medium 1. Therefore equation (11) gives
: sin§; = sinB,” or 6, = 0/ .(12)
i.e. the angle of incident (0,), is equal to the angle of reflection (3,),
- -Now substituting values of k; « r and k; - r from equation (10) in (7) viz
by | (Kyer),—p = (Ky+1),-¢
foweget . . ; kix sin®; = kxsin 0,
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kisinB: = k,sin O
Ad T 2 -

ie.
or S = K = (Ha82) = Y(g)) (since @; = O, = ©)
v, sin®, k@ V(E)  V(E) 1 2
This gives * sin 6, =22
sinB, n |
(Since refractive index, n = V(L €) = (¢/0)

This is well known Snell’s law of refraction.

Scanned with CamScanner



9.13. Rectangular Wave Guide

The most commonly used wave guide is that of rectangular

cross-section having inner dimension @ and # as shown in fig. YA o
9.2]. ' /
The solution of two dimensional wave equation 1/
/
(Vi#k)y =0 (1) 5
can be carried out in rectangular coordinates as follows : //
TE Mode. For TE mode E, =0 : hence equation (1) is to be // ‘
written for B, ; which takes the form . —-
' 0 - &7
Fig. 9.12
2 2
v il =0 (2)
ox”  dy
The boundary conditions are
98, ‘ =0
on |g
0B :
ie. —af=0al.x=()andx=a
0B
and —anzﬂaty=Oandy=b
We shall solve equation (2) by the method of separation of veriables.
Therefore writing Bxy) = X(x)Y() = XY ~(3)

where X is a function of x only and Y is a function of y only.
Susbtituting equation (3) in (2) and dividing by X }’.2 we get
2 -
Xad Yoy
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or 1 'x

: , , y
In above equation L.H.S. is a function of x only, while R.H.S. is a function of y only. Hence this equation

will be satisfied if both sides are equal to a constant say [;2 ie.

- —5 tko =+
X axz .
a’x
o ¥+(kc—p2)x=o
a*x
i 5zt gX = (4
where 2
q =k -p’ .(5)
and _1 'Y = p’
— =
Y dy
2
or a—}; +p’Y = 0 ..(6)
The solution of equation (4) and (6) are
X(x) = Acosgx + Bsingx (7
Y(y) = Ccospy + Dsinpy ..(8)
where A, B, C, D are arbitrary constants.
We have the boundary conditions
dB,
i Oatx=0andx=a
B .
o %?Z=Oaty=()andy=b
Thése conditions are equivalent to |
‘ %%'=Oatx=0andx=a
and ; %:7,=Oaty=0andy£b.
Differentiating equations (7) and (8), we get
' %};{ = —Aq sin gx + Bgcos gx
Qa;Y = — Cpsinqy + Dp cospy
sty S A S
~ Applying boundary condition 5= = 0, we get
. i EE x=a

'Bg = 0 .. This gives B = 0
Now applying boundary condition %% = 0, we get
i i 2 L x=a

~Agsinga = 0
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we must take A # O since otherwi
ise X=0and B.=0
b :=0. Hence

S =
Mmqa = Oorga = mn, that is,

, mr (mi

= —— (minteger)

1 ] . [¢ .

In precisely the same manner we conclude that D -1~ 0 (1)

an integer. In this way be obtain the solutions and p must be restricted to values p = n/b where n is

X(x) = Acos [ 2L . nm
whers a |¥3 Y0) = Ccos (7;) y ..(12a)
m=1,213, ... n=1,2,73,..
2 2
and b2 e +q = ;_nT n_2
The solution for B, (x, y) is conscquently 2 b ’
B, (x,y) = Bycos Uil cos L) 3 ...(13a)
a ok
h 2 2 2 /2
I
when (kK )mn = T — T 25 ...(13b)
. _ a b
Here the indices mn specify the mode. The cut off frequency 0y, 1s given by
nlz 2172
Wy, = Tc | — + Ll'i ..(14)
a b

The modes corresponding to m and n arc represented as TE,,, . The case m=n= 0 gives a static field which

does not represent a wave propagation ; hence the mode TEg represents non-trivial solution. If @ > b, the

lowest cut off frequency results for m = 1 and n=0,
nc

wy =", ©°F ko =7,
The mode (TE)p) represents the dominant TE mode and is the one used in most practical situations. The
values E, , E, , B, and B, for TE mode may be obtained from equations (22)-(25) of preceding section by

substituting the solution for B, , which is
B,(r,f) = B, (% y) €

; iy ik
= Bjcos MK o5 T gt --(16)
a b

Le. ..(15)

ikz- o

Thus we have
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Innw mue ATy ibe-Rr

E = —— Bycos —— sin
kb a 4
: ¢ nny iz
E\. - l"l?’(l) Bu sin lll:t.\ cos b. e ™
’ k(. Q ‘ .”(l-,)
imnk, iRy MYk z- e
B =~ “B,sinﬁ-—ucos-——‘—t‘"
' kla a b
:
inmk, MY ATV k- e
B, = - —-% B cos sin =5 e i
‘ kia a
For TE mode, these equations yield
:
put m=1, n=0,k’ =
a
X Iik(:‘l‘(l)( 3\
E:=B,=E =0; B, = Bycos ek
ik.a . v ik don
and /B, = - = B sin (7) ™ ~(18)
ina o[ TRX) k- o
{ E, =— Bysin|[— | J
L e a

- The presence of a factor i in B, (and E,) means that there is a spatial (or temporal) phase difference of n/2
* between B, (and E)) and B, in the propagation.

TM Mode : For TM mode B.=0; hence equation (1) is to be written for E, which takes the form

2 2
3_2 & QE +k2|E =0 (19)
ox” oy :

The boundary conditions are E,=0atx=0,x=a,y=0and y=b.
: - Solving equation (19) as for TE case, we note that the solution of equation (19) is of the form

E, (x,y) = Eysin [%] sin (&ZX) «(20)

- where lcc2 and hence w,,, are still given by equations (12b) and (14). This implies that TE and TM modes ofa
reciangular guide have the same set of cut off frequencies. However in this case m
- mon-trival solution since this gives E, =0and hence all components of E and B wil]
It is obvious that in this case the lowest mode has m =

off frequency of lowest mode is given by

=1 and n =0 represents
be zero.,

n=1 and may be represented by TM,, . The cut

1 112 g &2 172
Op=mc|5+<5| ==114+% 2
Since a < b, therefore tht: Igut off frequency of lowest TM mode is greater than that of the lowest TE mode by
o : !

N i
the factor | 1 + s The fields E,, E,, B,, B, for TM mode may be obtained from equations

( 17)~22) of preceding section if we substiluté
L ~ - E(nn) = Ey(x,y) et
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or

Thus we have

sin

(2]

It

—

5%}ZJ ¢ e i .(22)

]
Q
w0
—
l‘:
S 3
|
N =
>
Iad
1
§.

(22)
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