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Electrostatics in Vacyym

1.1 Electric Charge

Electrostatics is a branch of Physics, which deals with the behavio
at rest. So it is important to seck the answer to the question: What ig electric charge?
Many substances such as ebonite, glass, rubber, ete. when rubbed with silk, flannel or
other suitable substances acquire the property of attracting light bodies like bits of paper.
The substances in such state are said to be charged and they are said to possess what is
called electric charge. Simple experiments show that there are two types of charges. One
variety is called positive charge and the other negative cuarge. Like charges are found
to repel each other and unlike charges attract each other. According to our present
knowledge of the atomic structure of matter, all elements consist of positively charged
protons; negatively charged electrons and neutral neutrons. The charge of a proton is
humerically equal to that of the electron. In an atom or an ordinary piece of matter
there are equal number of protons and electrons. As a result, matter as a whole is
Blectrically neutral. Whenever two different bodies are rubbed with each other some of
the electrong from one body may be transferred to the other body. The body which
8618 excess electrons becomes negatively charged and the body wl?iqh loses elect;gn_s
fcomes positively charged. Matter as a whole or elementary pgrtmles of matter h}m
Protons, electropg can carry charge. But it is found that efle?trlc‘ charge cannot exist
Withont matter, Charge is thus a fundamental and cha-rastenstlc_: property of elementa.ri
Particles, It ig o scalar quantity. It adds up like real nunbers. While adding charges on
Must take care of their signs also.

ur of electric charges

Quantization of charge

; bt e P e U e SR asic unit, the
ly Hature all glectric charges are found to be integr ﬂ‘l II‘UW‘\Plﬂb of o'nfd?sl:rete un;ts i
m&gnitude of electronic charge (). This occurrence ol electric charge it :
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. = Fig 1.4-1
Obviously E' = F/q, i.c., the for
‘ v s iy WUG Iorce per unit char : i
function of the position vector f; of P with reqpeztl '}rlf (t}lp]a'md"at 1?'110 SO T et
on @ but is independent of the test charee ‘Tll i Sl LD T
ce chare , ~a186 q. Thus in the region of space surrounding
the source charge 2ve can uniquely specify a vector physical quantity E at every point
This means that E defines a vector field. Ay e B T
Thus t:he“ force F' on q due to. Q may be considered as arising in two steps. (i) The
charge Q”setar up an electrical environment, called the electric field E, in the surrounding
space. (.zz) When a charge q is placed at any point without disturbing the position of Q
it experiences a force, which equals the charge ¢ multiplied by E at that point.
From Eq. (1.4-2) electric field at a point in space due to a charge Q may be defined
as the force on a unit positive charge placed at that point. The unit of E is N.C~!. A
unit charge may be high enough to disturb the configuration of the charge producing the
field. A way out of this difficulty is to cheose the test charge ¢ negligibly small. Then
we may define the electric field at a point as the limiting force per unit charge placed at
that point, i.e., : , 3
: F

F = Tim —,
qg—0 ¢

Note that ¢ — 0 is an idealisation because ¢ — 0 contradicts the gua.n_tization of
charge. In case of immobile source charges we need not require this idealisation.

Our definition of electric field in Eq. (1.4-2) assumes that the source of the field is
& point charge (). If the source is a set of discrete point chargea ql, . : q\ w}m&.e
t to the origin O of some coordinate system are respectively

ositior ‘s with respec : .
2 igeiope itL 168 P(7) can be calculated by using the

71, 7, ..., 7y then the clectric field at any pomt

N N
- 1 a4 A -
- - st o = - ——.-—R', (1-4"3)
B e ok ey By 4”“3-2:1 R

principle of superposition as

j=l
1 the location of the point

i f observation P frox
e, to P. Equation (1.4-3) can

where : is the distance of tl :
§ - sthe dis he direction from g;

- charge g; and Rj is the unit vector 1m
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Fig 1.6-3

Therefore, tota) potential at P due to the whole disc is obtained by summing oyey
all rings from r = 0 to p = a,
_ o Y rdr
it 2¢o 0 Vr?4 g2
o /W zdz
a

Sec 5 [Putting 72 + 22 = VA

- %[m_;zq (16-3)
=§5[\/m—xJ forw>0and%[m+m} for z < 0.

0

The electric field at P is given by

- . dg o T 2
‘E——V¢—~ma~;—~§5[1——\/ﬁ]w for z > 0 (1.6-4)
= o x .
and EZ—ZEE [1+‘\'/a7——+—-TEJI‘ forz <0 (1.6-5)
h(x) E(x)
'\ L b 5
(e 2¢,
2gy
0 X
3 o
0 X -.2-%
(a) (b)

Fig 1.6-4: Variation of (a) potential and (b) field on the
axis of a uniformly charged disc.
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Fig 1.6(—)4];1;(;);‘;?;25 Jiﬁfi(f).?(::f,oiecr'ric botential ¢(z) and field E(z) with the dis-
tahce T. e Sopni AV R T continuous whereas E(z) is discontinu-
In fact this is true for any sy;f >ab I\L) 18

ous- i ace Containing charges.
If the point P is far away from the disc thep x - o 4o, .
we can write approximately, || > a and using binomial theorem
2\ 1/2 (
\/a2+:1;2:.7:(1+%) ’&‘m(l-}__ai =’L‘+£
@ 522 2t o
Substituting this in Eq. (1_6-3) we get
&
(o) a 1
¢($)='—"-——=___.Q’

where @ = ma’.0 is the total charge on the dj

from the disc it behaves like a point charge
If the disc is of infinite extent (q — 00) then

it
o g ()
260

o. A
—— forz <0
2¢q

E =

In this case the field is uniform and everywhere normal to the plane of the disc.

3. A line of charge

Suppose a uniform line charge of density A per unit length exists on the y-axis from
Y==Ltoy= +L. We are to calculate the field and potential at any point P at.; a
distance  from the line of charge and lying on the perpendicular bf'sector of the line
(Fig L85). The electric field dE at P due to an element dy is of magnitude

1 Ady
e 47!‘60 R2

—

[dE

' l : L) =
“nd directeq along PA. It can be broken into two components ldE’ cos@ along OP
and

dE ] sin @ perpendicular to OP. Now, if we consider another element of line charge

Placeg SYmmetrically about O it becomes clear that the perpendicular lcci)imliéon:!}gs ganct:el
Out anq only the horizontal components contribute. Therefore, total field a ue to
th

® Whole Jine of charge would be

{8l &g _ 3)
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Fig 1.6-5

Now from Fig 1.6-5,
y=axtand, dy=asec’0df and /R = cos or R=zxsech.

Substituting all these we get,

2 BA [ cosfdf gx & 2\L
| e — . 2 6 — . 5 16'
s dmeo J_p, i dmrega S L dmey z/z2 + [2 ( 6)

If the point P is far away from the line charge then z > L and we get approximately,
= T2 AL @5 G

where Q = 2)\L is the total line charge. In this case the line charge behaves like a point
charge @ placed at the mid-point of the line.

For a line charge of infinjte extent or for points very close to the line charge L >z
or 1 = /2 and we can write

E‘fv_f_..z_{’— zA (16-7)
imeo = 2regz’ '

Potential of an infinite line charge

So fa.r.in calculating the potential due to 5 charge distribution we have assume the
potential to be zerg at i ‘

_ ) nfinity. This is alloweq for charge distributions located within
finite region of space, Inp this example ch

cannot take the potentia] to be zero at infin;

the potential diverges and we get infinite regylt, The work done in taking a unit charge
from some reference point zj to the point z is given by

é(z) — ¢(z) = -/w E(z)dz = —fm -—)Ldm = AR A . (168)

Inz +
zo 2TMEQT 27eg 27eg
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Fig 1.7-4

Therefore, total electric flux over S' is

ffﬁ-ﬁdb”: ! j{"'”gds.
g dreg Jg T

7-ndS _ dScosf

Now the quantity Sl e dY is the solid angle subtended by d$ at q.
r
Therefore,
= q q q
E-ndS=—"— ¢dd= —— x4 == 1.7-
f 4 41 €0 47 €0 & €0 ( 4)

[ Total solid angle subtended by S at O is 47]

Charges may lie outside the surface S. Consider a charge g at a point O outside a

closed surface S as shown in Fig 1.7-5. If an elementary cone of solid angle df) be drawn
from g, it would cut the surface twice in areas dS; and dS; at P; and Ps.

Fig 1.7-5

d lines enter the close surface through dS; and leave it through dS2.
gles subtended by dS) and dS; at O are the same we can say tha.t the
ux through dS) and dS, will be equal and opposite and hence, they contribute

- The electric fie]
As the solid an
electric fi

:lcl):hulllg ltO the total electric flux over S, This is true for all cones drawn from O to cover
who

o e surfa:.ce S Thus the contribution to the total electric flux over § will be zer0
1t charges lie outside S, If there are a number of charges g1, ga, . .. inside S then by
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charge cAS on AS can bt
Tif due gto field E, pdeulcle(z); el})(elt 2 force on itself but this charge 0 AS experiences
& for_ in AS i Y Other charges, Therefor
contained 10 18 fore, force on the charges

F=oASE, = ZAS,

2(-(]

Il

So the force on unit area or electrostatic pressure is

2

Q

p=

|

B

€0

Obviously the pressure acts.in the outward direction irrespective of the sign of o. The
pressure can also be expressed in terms of the field given by Eq. (2.2-2)

i at the conductor
suriace,

13 =2 %EQEZ'I:L.

2.3 Electric Dipole

Two equal and opposite charges separated by a very small distance are said to constitute
an electric dipole. The molecules of a dielectric medium placed in an electrostatic field
behave like an electric dipole. So it is important to study the electrostatics of electric
dipole before considering the electrostatics in dielectric.

For example, in a HyO molecule the positive and hegative charge centres do not
coincide but are separated from each other by a very small distance. Hence, a Hy0
molecule can be considered as an electric dipole. We define dipole moment p of a dipole
constituted by two charges +¢ and —q separated by a distance [ as a vector quantity of
magnitude gl and directed from —¢ to +¢. It has the unit of coulomb-metre. The value
of dipole moment for a molecule is usually very small. For this a smaller unit called the
debye unit is used. 1 debye unit = 1D = 3.336 x 10~3° C.m.

Potential and field due to an electric dipole

f a charge —q at the point 7" and a charge +¢

Suppose that e a dipole consisting o
o poney e potential at any arbitrary point 7 is given by

at 7 4 | as shown in Fig 2.3-1. The electric

T e |
o(F) = 4,,r60’l7-,_7-,o,_#['\ dreg |7 — 7|
b0 TR LS By (2.3-1)
— 47T€O ‘Ro__l" 471'60 R
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e rsin@ dyp e
Thus,
R (2 cos 07 + sin 99) . (2-3-9)
4meqrs

The magnitude of E is

e 2 TET vyl s 1 + 3 cos? 4.
IEI = V4 cos? 6 + sin2 6 v

If 3 is the angle made by E with the radius vector then

' 1
tan 8 = g—f = %tanﬁ' or (= tan"! (5 tanﬁ) ,

Note that the dipole field falls off as 1/7® whereas the field of an isolated charge
(monopole) falls off as 1/r2.
Equipotential surfaces and field lines of a dipole

The equation of lines of force may be obtained from Fig 2.3-3(a) which shows a line element
dl = 7dr + 0rdf and electric field E' = #E, + 8Ey parallel to each other. Therefore,

rdd  Ey __ sind - dr _ 2d(sin@)
dr ~ E, 2cosf T b sinG e,
Integrating we get,
r = C'sin?4.
JPZ
ES
dr A ,: E
rdé\‘(:ldf = B
L
A r EG
-0
P
9 y
(a) (b)

Fig 2.3-3: E‘quipot'ential lines (dotted lines) and lines of force
(lines with arrows) of the dipole shown in (b).
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Method of Electrica] Image

6.1 Introduction

Various methods are available for
e T e available for the solution of electrostati :

T is to solve Laplace’s or Poisson’ Qstatlc problems. Most straight
ditions. However, the method is not found tsson s equations with proper boundary con-
problems in electrostatics, which can be s 10 2 sl Thit alln ko, special
ages, invented by Lord Kelvin. The esse:zg e(; V;’lth B ey the methee
potential due to a given charge distributior b0 o 3netl'10d COI}SiStS e
tion, which satisfies the given boundary colnd)if'c'C()nSlde:;‘l1 e dli’fere'n t s co'nﬁgura-
theorem. The method is particularly useful f(lain;riglei;eio(;xs?;ztmg ft = }Jnlqieness

_ , - : ng of point charges
near conductors. To find the potential outside the conductor the induced cll)mrges on :he
copductor are replaced by one or more fictitious point charges of suitable magnitudes at
suitable locations such that the equipotential conditions at the conductor surfaces and
Laplace’s or Poisson’s equation is satisfied everywhere in the region outside the conduc-
tors. According to uniqueness theorem the potential thus found will be the correct one
for the entire region outside the conductors. These fctitious, unreal, imaginary charges

are called image charges (from the analogy with optical images in mirror reflection). The
method is illustrated in this

chapter with a few examples.

6.2 Point Charge in Front of an Earthed

Conducting Plane |
ducting plane forming zy-plane and a pbinf charge
). We wish to find the potential and field in the
due to ¢ and partly due to induced charges on
must have a knowledge about the induced

Suppose we have a large grounded con
axis at z = d (Fig 6.2-1

+q placed on the z-
region z > 0. The potential will be.par‘tly
the plane. To find the latter contribution we

205
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charge distribution. In the method of electrical images we 0 to 1-ep1ac;e this il'lduged
charges by image charges. In this attempt the following conditions must be obeyeg,

(1) Potential ¢ = 0 all over the conducting plane (z = 0).

(#1) ¢ must be zero at infinity.
(1) ¢ satisfes Laplace’s equation in the region z > 0 except at the point A Where the

charge ¢ is located.

\ A P(xy.2)
C ’’’’ /)
""" I”
o"’ I”
”a’ P r
"ﬁ’ ’/’
- '
B /!
P d Z d U oy e -2

B(0,0,—d) / O A(0,0,d)

Fig 6.2-1

The symmetry of the problem suggests an image charge —q located at z = —d. et
us now see that this choice satisfies all the conditions (i)-(iii). The potential at any
point C on the plane due to g at A and the image charge —q at B is

P 47:.—;0 S 56) = O

The placing of —g at a finite distance does not affect the condition (ii) at infinity.
AS the image charge —q is located in the region z < 0, it will not affect the condition
(7i) in the region z > 0. Thus, our choice satisfies all the conditions. According to the
uniqueness theorem the solution thus found is unique. So instead of the actual induced
charges the image charge can be used to find the potential and field in the region z > 0.
The actual induced charge distribution can also be found.

Potential and field at any point P(xz,y, z)

$z,2) = 4:60 (qu‘ qu)

I

<2 ( 1 0 1 (62
meg \/w2+y'2+(z-—d)2 ‘\/m2+y2+(z+d)2





















