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surrounded by 2 cooler atmosphere which contains clements like hydrogen. nitrogen. sodium,
cesium. copper etc. in the gaseous state. When radiation from the central mass passes through
the s:un_-ounding atmosphere, the elements. present there absorb those wavelength which they
can emit at a higher temperature. As a result, these wavelengths are missing from the s ;
gpectrum and we see dark lines in their place. In this way Kirchhoff's law estakblighed that a;;::;

of each element give a spectrumn which 1 characteristic of that element alone
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B-5. BLACK BODY RADIATION :
Whe di r ik
e 1:;2;: ali:l“ E“ZEJ;“; on a body. a part of it is reflected. a part continues into the 1 i
absarpiiuig:.- s fm!'h'fortau e‘ ., and the_tl'urd part 1s transmitted by the bod A b e interior
e e g u‘h:zza.'efgngths is called an ideal black body o-r simply abl.)l‘ k odly, s
: i J;ecr::: sorbs all the incident radiations compft:teh Speae body or we
n » . # ~ ]
g none and transmiting none is called a black b;’;’:’%"}i‘““hof
e other

ul,;a:se!ength falling on it, 7€
characteristic of such a body 1
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e _ ure it emi
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It 1s found that as t}
- & 1¢ “'n] S . =
Perature of g body is raised, the colour emifted by it becomes richer

in waves of shorter length. F
B gth. For ex;
about 525°C, cherry red at '11101”03}“”:”.19‘ the colour of blackened platinum appears dull red at
1600°C. The problem of di*‘trib\ tt' 00°C, orange red at 1100°C. vellow 1250°C and white at about
when heated to different t-(,mlp lon of energy among the wavelengths emitted by black body.
. : ; eratures, was investi ]
Lumnjerhandb Prmgshmm in 1899, Thev uk;d““‘*“lgafﬂﬁ by
Fi 3 Yy r = v A s £ » - =X
heated chamber with a small aperture as blacfl\nbE lf'f'“'l‘;:‘i”} &
§ : body whose

temperature was measured by a therm v [
is shown in figure 3. S is a slit sliicad ocouple. The arrangement S A | L__ -
mirror M. Hence radiati at the focal plane of concave AX \ s ()8
1 1aton from a black body was reliaoted an sin P\ E —
parallel beam from this mi 5 o7 . = RElecieq ané = s \ 2
. rror. Radiations are dispersed bv 5% X & \
prism P of rock salt or fluorspar placed on the t » hhl  a g R ‘
7 i : e turn table of a \
sp.lect.r?metei]. They are now focused on the bolometer with the v
asga al.m:?t er cancave mirror M,. The bolometer is connected p\)\“
to a sensitive galvanometer. The turn table is votatad AEalvEs \\:*
that each part of the spectrum is focused successively on. the N
bolo’meter.and the deﬂectmn. of the galvanometer is proportional to
the intensity of each line.
The wavelength at different portions of the spectrum was
Fig. 3.

ca?culated by the formula for the dispersion of the material of the
prism. By determining the intensity for various wavelengths in the whole spectrum of black body
radiation, a graph is drawn between intensity and wavelength. The body was raised to different
temperatures and the distribution curve for each was drawn. The
results are shown in fig. 4. It is observed that : § TG w
(i) as the temperature of the body rises, the intensity of
radiation for each wavelength increases.
(i) for any one temperature, energy is distributed
continuously among the various wavelengths and is maximum for
a particular wavelength. The point of maximum energy shifts

1259°K

Intensity E, ——>

Visible Region

towards the shorter wavelengths as the temperature increased. 1095°K
(iii) the total energy of radiation for given temperature is ) /Q

represented by the area between the curve and the horizontal / / ; VK

axis. The area increases according to the fourth power of absolute Fi? ‘: —

temperature.

B-6. STEFAN BOLTZMANN LAW :
According to Stefan’s law, the total amount of heat radiated by a perfectly black body per

second per unit area is directly proportional to the fourth power of its absolute temperature,
FE < T4 or E= UT-; .

Le.,
where o is a constant, called the Stefan’s constant. This law is sometimes also called as Stefan's

fourth power law.
In the above form, this law refers only t
A at absolute temperature T'is surrounded

then
4
amount of heat lost by black body A=coT

o the emission and not to the net loss. If a black body
by another black body B at absolute temperature 4

wiue LO-6L-2led

R = |



Y i S

m
amount of heat absorbed by black body A from black body B =0 Ty 1
S0 net amount of heat lost by A per second per unit area = o(T" -Ty)
This is also known as Stefan Boltzmann law. ) vacuated cylinder with
Thermodynamic Proof : Suppose the radiation is enclosed in an Gt of assuming perfectly
perfectly reflecting walls and perfectly reflecting moving piston. The objec diation otherwise the
reflecting walls is to avoid heat exchange between the walls and the radi
thermal capacity of walls will come in the calculation. L
Let u = energy density (energy per unit volume) of the radiation i
" = volume of the cylinder
P = pressure of radiations
Total energy of radiation = energy per unit volume X volume D
U=uxV s rted b
According To Maxwell's electromagnetic theory of radiation, the pressure p exe y
radiation is given by

nside the cylinder

P%” . (2)

Let us suppose that a small amount of heat d@ is brought into the cylinde:r and at the same
time the volume is changed by an amount dV. If dU is the change in the mterna}l energy of
radiation and dW the external work done, then according to first law of thermodynamics,

dQ =dU +dW
=dU + pdV. ...(3)

From equations (1) and (2) substituting the values of U and p in equation (3), we have

40 = duVy + %udV

=udV+Vdu +%udV
4
:EudV—i— Vdu.
According to second law of thermodynamic, we get
d@Q=TdS
so that TdS = %ud‘/ +Vdu
. 4 u Vv
or dS=——dV+—_du.
3T i ..(4)

Considering S as a function of (V, ) i.e, S=f(V, u), we have
dS =(§§)dv +(glj—]du.
Comparing equations (4) and (5), we have
(B )y
. 0°S d
Again E;I;Tj = 5%’%



i.e., _a_(ﬂ'_g_,]__ d (aS
dJu\aV -a_ftgj

41 4 u o 1
3T 372 u T
11_4 u oT
3T 8 7% du
ou _,dT
u T
Integrating logu=4logT +a
or u=aT",

where a is the integration constant.

We know that the energy E radiated per second per unit area from a perfectly black body at
absolute temperature T and the energy of radiation u inside an enclosure at the same

1

temperature, are related by

E= lu.c,
4

where c is velocity of light.
Substituting the value of u in this expression

E = L gt
4

f=0T"
where 0 = lac and is called Stefan’s constant. This is Stefan’s law.
4

Ex. 1. A black body at 500°C has a surface area of 0.5m* and radiates heat at the rate of

1.02 x 10* J/s. Calculate Stefan’s constant.
According to Stefan’s law, the total heat
and at temperature 7' K is given by
GoudlPr of WE=—

radiated per second by a black body of surface area A

we get
1.02x10" joule/sec
Gmr—— T
0.5 m>x (773 K)*
=5.7 %107 joule (rng-sec.K4 )

Substituting the given values,

B-7. WIEN’S DISPLACEMENT LAW :
When radiation from a black body 18 passed through a prism, a continuous spectrum is

obtained in which the intensity of radiation in different parts of the spectrum is different. The
energy is distributed in various wavelengths varying from zero to infinity. The law that connects
the intensity with wavelength is known as the law of distribution of intensity of black body



B-8. PLANCK’S RADIATION LAW : Rayleigh Jeans formula could

Planck’s quantum hypothesis : Wien displacement law and Ray = black body radiation.
not explain the entire shape of the curves giving the energy dlsmbunmf k radiation chamber is
To explain the entire shape, Planck, in the beginning imagined that a blac ~< This time he
filled up not only with radiation, but also with the molecules of ap erfectdgaq- molecules and
assumed that the exchange of energy can not take place between radlgtlon an g t:% s Failintioh
hence introduced the idea of resonator of molecular dimension as via media be : : ¢ wholly to
and gas molecules. The resonators absorb energy from radiation and transfer partly ibleyfor
the molecules when they collide with them. These resonators were supposed to be r e b
the emission of radiation. They could have all possible values of energy and the}I‘ c;;ummer tls
determined by Maxwell Boltzmann distribution law. The distribution law thus derlvg co 93 0
be the same as given by Rayleigh and Jeans. Planck therefore, gave a new revolutionary 1dea
which laid the foundation of the modern quantum theory.

According to quantum theory, the exchange of energy by resonators does not take place
continuously but discontinuously and discretely as an integral multiple of small unit of energy
called the quantum or we can say that the resonators will emit energy only when the Cnerey
absorbed is a certain minimum quantity ¢ or integral multiple of £. Thus a resonatlor which has
an energy (r + p) ¢ [r = whole number, p = a fraction] will remain quiescent until the energy
absorbed amounts to  (r + 1) £ when the energy ¢ may be emitted and resonator may revert back
to the state with the energy r £. Thus the resonator can vibrate with integral energy 0, ¢, 2 ¢ ...
ne. On this basis the law of thermal radiation was derived.

Number of resonators per unit volume lying in the frequency range v andv +dv
In accordance with the electromagnetic theory, the radiation is supposed to consist of a number
of waves. If we consider the radiation to be enclosed in a box then the waves in the box travel in
all possible directions and undergo multiple reflections from the various walls of the box. A
reflected wave interferes with the corresponding incident one to form stationary waves with walls
as nodal planes. The formation of stationary waves can be understood by an analogy with the
vibrations of a stretched string with fixed end points. As we know that, in this case, only certain
discrete frequencies of vibration are followed. The end points of the string are two nodes of the
stationary vibrations. If L be the length of the string then allowed wavelengths are

: L
A.=2—; n=1, 2, 3,..... v

n
Correspondingly, the allowed frequencies are
¢ nc
—— ;n:1,2,3',___m
A 2L '

where c is the speed of the waves.

Every allowed frequency is called 4 mode of vibration. We can calculate t
vibration inside the cube (of volume %) Just as in the
be extended to three dimensions. The

he allowed modes of
N the case of string for which the analysis is to
wave equation in one dimension i

Pur 1 g%y

ax® ot g2 swikl)
where u* (x, t) represents the displacement of the

: : stri i ,
the velocity of wave propagation. The solution of ah Ing at a distance x gt an

a ‘ y Instant t and ¢ is
OVe equation (1) is given by

u* (x,t) = Asin(—’}—KiJmﬂnv ¢
n ]

!

.-(2)



where L be the length of the string between fixed ends and let n be positive integer greater than

or equal to 1. The wavelengths and frequencies are given by

ln=% and vnz_}%:%,
The number of possible modes of vibration in frequency interval dv is given by
du=[%]dv. ...(3)
Extending the above case to three dimensions, the wave equation is
ou* +82u* o'ur 1 _Bzitj (@)

> + o R ]
dx®  9y*  92° ¢t ot?
then its solution will be

u* (x,7,2, 1) = A sin[n";‘x} sin ("’fy ] sin(”i‘z}cos omvt ...(5)

where n ,n, and n, are greater than or equal to 1.

Substituting equation (5) into equation (4), we get

2 2.2
L8 2 2 9 _41'! \Y
(-E](nx+ny+nz)— B

c

2.2

41

or nZ+nl+n?=—"p ...(6)
= C

From equation (6) it is obvious that in three-dimensional cases the wavelengths and
frequencies are determined by three integers n,,n, and n,. Each choice of n,, n, and n,

corresponds to a particular mode of vibration (frequency). The total number of frequencies is the
total number of possible sets of n,,n, and n,. The number of modes of vibration within

frequency interval v and v +dv canbe found with the help of equation (6).
It can be shown that the number of modes within the frequency range v to v + dv is the

volume of an octant (% th] of spherical shell with radii equal to

2Lv 2L (v+dv)
== and ———
c c

This volume is

9
-1—-4nr2dr=l-4n(—2Lv] elay
8 8 . c

3.2
:4nL3v o
c

But I? is the volume V of the cube. Therefore the number of mod inside the cubical enclosure
18
4nVv*
CH
Since electromagnetic waves are transverse waves, there are two possible polarizations for
each mode. Therefore, for radiation, total number of modes of vibration (or frequencies) between
vand v +dv 1s

dv -




4nVv?

=9 3 dv
-
B BRvad =
e s sonator can be
lDerivation of law : Using the laws of probability the average energy or e
estimated as follows -

. . : : ith resonator
Accordmg to the laws of probability, the modes of vibration associated with tors
having energies 0, € 2e,..... ne are in proportion

¢ OlEy ,elBp o 2lE0 ,3elEy ate
that ig 1, g"“EU ,g_zﬂEﬂ ,er:SE"EG ...... etc.
where E; is an arbitrary constant,
Let, N = number of resonators with zero quantum energy
M = total number of modes of vibration,
then M =N + Ne®'Eo  Ne%/E0 4
= N[14¢ /B0 4 26/ Eg+... ] ...(8)
N

1-¢ %5

since [1 +¢7/%o0 +e 2B ] represents an infinite geometric progression.
Total energy E of all the M modes will be

E=Nx0+ex Ne ® 0 4 9¢ « Ne~ 2%/ Eo +3exNe %'Bo ,
= Nee ™™ E0[1 4 2¢7¢/Eo | 32/ Ep +.to0)

=N -—E.-‘E[] 1 )
Ee [_—__"_(l_e-sto)z} ...(9)

Putting the value of N in terms of M from equation (8), we have

e M[]__e—s!Eg]w—alEo _ Mae—eon

(- TR0yt~ ) + (10
The mean energy of the resonator is given by
E E ee'”E‘J
M (- o t/Ep) [from equation (10)]
3
(et'Bo _q) il 11)
According to kinetic theory E;, = kT, Then eq. (11) is
= &
Comparing expression (12) with Wien’s displacement |
; * a
to v, we write £ =hv where h is called the Planck’s Constan‘:’g‘?\?i rﬁlge that E must be proportional
77 hv ’
U

(eh\H kT o 1)
Using the classical statistics, he dedyceq that



8mv?
u\.-' dv = "_“3‘—"dv U\,r.
c

here u, is density of iati 7o - s oy
w v y ot v radiation, and Uy is mean energy of resonator emitting v radiation.

Therefore wdy< 8™ hy _8nhv®  dv
i 3 (hvIkT _l)dv 8 (eMVRT _1) ' i 14)

We know that

or dv:——crdl
?LJ

b d ks

8t he ‘ da

so that Uy d\ = ’
AP eth/ART _g

...(14)

which is Planck’s law.
h
For short wavelengths e"’*T hecomes large compared to unity so that Planck’s formula
reduces to

8nhe dAi
K5 .ech!le

uldl =

= 8nthcd Pe”MATA y g,
= AL 5e M gy,
where A and a are constants.
u,dh = AL "B /AT g,

which is Wien displacement law.

Ex. 1. Calculate the average energy of an oscillator of frequency 5.6 x 10'% second at
T =330 K, treating it as (i) classical oscillator, (ii) Planck’s oscillator.

The average energy of a classical oscillator is given by
kT = (1.380x107%*)x 330

- 4.554%10°%" joule.
hv

The average energy of Planck’s oscillator is given by _‘—_—(eh" T _q)
_ (6.626x10™)x(5.6x10'%)
{ ( 6.626x10 J
exp. o |l
1.380x107%% x 330

=2.9450x10%! joule.

B-9. RAYLEIGH JEAN'S LAW :

The deduction of Bayleigh’s formula for the distribution of energy in the normal spectrum has
been done by assuming that the energy is equally divided among all the possible modes of




IDEAL FERMI DIRAC GAS

In Fermi-Dirac distribution, we consider a system of identical, independent, non-mterac:tm‘g
particles sharing a common volume and obeying antisymmetrical statistics SO that the spin is
half-integral (fermions) and then according to the Pauli principle, the total wave function is
antisymmetrical on interchange of any two particles.

9+0. ENERGY AND PRESSURE OF THE GAS :

Particles with half-integral spin like electrons, protons and neutrons are fermions that obey

Fermi-Dirac Statisitcs. The general expression for the most probable distribution-in-energy for
the Fermi-Dirac gas is,

8i

n =—
l a+fe
Pt

, (Eq. 12 art 6.3)
i +1

which, on putting D =e%, is of the form
n, Bi

‘T -

Since in the denominator factor +1 occurs, o need not be restricted to positive value only but
may assume negative value as well unlike Bose Einstein gas.

The number of one particle states lying between momentum p and (p + dp) is determined

from
(4n/3).p>
=, e——— (Eq. 1art 6.10
P pdyy :
o AnVpdp
giving gpdp =& T . (2)

where g; =(2s+1) is the spin degeneracy factor (arising due to the spin, s, of the fermionsg)
» 8 2 ons).

4 ) _1 : : 4 _
Since €= p“/2m and dp = 5 V(2m/¢) . de, the number of states in the energy

| range between
¢ and (e + de) will be, on using equation (2),

g(a)de:gsfi—gg.ﬁme. (m/2€) . de, (3
.. (3)

where g(g) is termed as density of states function.

From equations (1) and (3) we get the number of particles in the en

ergy y:
(e + dg), as 8Y range between ¢ and

(306)



WA
4 1/2
dn(e) = g, i .\/(2m).~f"__‘,ifh e (4)
where we have substituted = ~l—
kT
Let us put x=¢lRT,
and dx =de/kT.

equation (4) then becomes

De* +1
e _2_[2nkaJ3 A 00
s Jn h2 -De‘t+1

From the thermodynamic properties of diatomic molecules, we note that translational

partition function is
, 312
z =(2nka} v
12

It follows then

i - 285% x2dx

Jn De*+1
Therefore total number of particles

28,2, ¢ 2dx
=|dn=—1 i ... ()
Sf ke 5 e e
and energy E=Jedn=kTdex.

=kT.

=N i A .t (6)
Jr 70 De*+1

We shall evaluate the integrals in equations (5) and (6) for both values of a, i.e., when o is

itive and again when it is negative. When o is positive, D is greater than one and the
psrildl'::ion <0 obtained is referred to as slight or weak degeneracy. Condition corresponding to o,
iegaﬁve :,p D less than one is referred to as strong degeneracy.

A) Case of Slight Degeneracy :

;'01' this case, integral in equation (5) can be expressed as

-1
/2 . W i
0 pe*41 9

-x -X -2x
o« 1/2 € e e
= 3 1- + -
- .[0 xrdx D { D p? }

1 p= 12 -x 1 = 12 9y 1 pe 12 3
=— x' e dx —— x ‘e ““dx + — We, Xy .,
DJ‘O j[} dx+D3 IU il

—-X

DZ



so that totg] number of particles is given by
A e (7)
Bl i)
D 23”2D 33/2 D2
Further, the Integral in equation (6) can be solved as follows :

312
= ¥ dx S 1 oo b -2
1 Iu x3!2e‘xdx——f 32 i dx + ..

0 De* +1 D pA.<b
_nf, 1 1
" 4D\ " gp g
so that the tota] energy is given by
_ 38,2, 1 L .. (8)
E= h kT 1_25"21) +___35"2D2

Putting the value of g.Z, from equation (7) into equation (8), we get

-1
3 1 1 i 1
E =EnkT[1 - 251"2D X 351’21)2 _.“'J (1 _23121) ¥ 33-!"2D2J

3 1 1
—EnkT(l +25;"2D "‘3"51—’1,'%—2"!‘...},

2
which assumes the form E =§nkT[] +-—51—{§-[ HZ J-—-—:}E(——ng— Fosa by (9)
27\ 82y ) 352( g 7,
8sZ, ; .
! from equation (7) which has been approximated only upon the first term

after putting D =

of the expansion. :
The pressure of the ideal Fermj £as can now be obtained by the relation

P =_[i€)
WV )p g

_2E
V

anT, 14 1 ( n 1 n 2
Vi 2lez ) pr gh.Z,J Tl <. (10)

in which nk = R, for one mole of the ideal Fermi gas.
We infer from equations (9) and (10), that ideal Fepmm:
: : o s ermi :
behaviour and this deviation, as we know, ig calleq degeneraiasociex_'late
2 VIOHSIy,

) 1 -x :
function of ) or e ©. Smaller is the value of D) o greater the value of _{

the degeneracy.



(B) Case of Strong Degeneracy :

When o i y " .
s large and negative, ¢® >>1 or D is much less than one. This increases the value

1
of = a F
D nd hence the degeneracy will become more prominent. Further

i n

Bzgzt

, from equation (7),
5

3
-2 . .. (11)

& (2nm kT)¥2V’

which shows that a gas will be highly degenerate at low temperature and high density [%J "

sg&llll discuss this case of strong degeneracy at two temperature ranges : firstly when T=0, i.e., at
absolute zero .and‘ secondly when temperature is above absolute zero but degeneracy is still
considerably high i.e., D is still less than unity.

(i) At T = 0 : From equation (11) we note that when 7 = 0, D = 0 so that equation (5)

assumes the form
o 282 [ 3M2ds
v"E 0

Since D =0, we can replace the upper limit by 1/D. Therefore
2gszt j”D xlfzdx E 2gSZ! 2 . (12)
x 0

n= —
Jr Jn 3D¥?

2/3
ek 1 _(3n /2
which gives 5 12.7,
o mkT 12 o
with Z, = 2 Y
h
1 h? 3n e
we find that D = 2ka(4ansJ ' s (18)

which is a measure of degeneracy of the ideal Fermi gas at T'=0.
) we can obtain the energy of the Fermi gas at absolute zero. Putting E as

From equation (6
E, and D=01n equation (6), we get

28,2, (= 312
EO =kT.7;'—I0 - o

where E, is termed as zero point energy of a highly degenerate Fermi gas. Replacing again the
upper limit by 1/D and solving the integral, we arrive at
28,2, 2
EO = kT )
Vo 5D%?




——-________-_____-___——_‘____ /

N using equation (13), becomes

2/3
2 3n
Ey = kT. 2852 2[4{‘_*(#_,,_—}

which, o
5/2

5| 2mkT | 4nV &s
"/E - 5/2

2/3
2g (onm kT Y "y, 2 n iﬁ"}
=kT.E[%‘2—-J VX3 2mkT (4nVes

3nh2( 3n o - (14)
" 10m | 4ng,V

and the corresponding zero point pressure will be
_2E

3V

2/3 E
_nhk*( 3n ses (1B)
V 6m| 4ng,V
From equations (14) and (15) we find that a highly degenerate Fermi Dirac gas would have a
residual zero point energy and pressure—the so called zero point pressure—even at the absolute

zero of the temperature, quite unlike a Bose Einstein gas where all the particles are condensed to
the ground state with e=0at T = 0.

Expression of F and P in terms of Fermi Energy & :

From equation (3), the total number of energy states lying between 0 and specified value
€ can be obtained as

__2rV _ 372 (& 1/2
g}——gs—hg-(zm) _[0 e “de.

nVg 3/2
o =(2m gf) ... (15a)

4

Further, in Fermi Dirac distribution, not more than one particle is

i . to be o i i
cell which is also obvious from ccupied by a given

n -
' Bt +1 ,
which gives n; = g;, sinceat T=0, D=0,
Therefore taking g f =n, we write
an Vg
n= b (2"18 )31‘2
2 2/3
or Ef = _h;( 3n
2m | 4n Vg, ... (16)



" il Ge GiQo

vs'rhere the quantity e is called the Fermi energy and it represents the energy of the h ighest level
filled at T = 0K for the given assembly.
From equations (13) and (16), we find that

L. e (17)
D kT
and from equations (14) and (16), zero point energy is
_ 3nh? 2meg
97 1om " p2
3
@& e ... (18)
e |
and finally from equations (15) and (16), we arrive at
_n b 2mep
=2 By ... (19)
5 V
If we define the Fermi temperature as
ka = Ef
equation (17) becomes
1 o
n T

from which we conclude that gas is degenerate when T << T}.

(ii) At T above absolute zero but D << 1 : From eq. (4), the number of particles lying in
the energy range between € and (¢ + de) 18

dnmV el2de
dnle) = &= VD T

We have seen in chapter 6 Art. 6.10, that
D= % = _e‘-}l:'kT

1/2
4nVg, om? al"'zdg
3n e e WVRT

dn(g) = 3n. (

But from equation (16),
9 213
_h 3n
1 o2m AnVeg, |

-3/2
AnVEs | _ 2mef
giving 3 B2 ’




—

= vz 2
so that ome,; Y2 [om3 gll“de
- f m'|] _E &
dn(s)~3n.( v ) 158 S WIET 41

_3n e'2 de -+ (20)
28?‘!2 ' e(E—u)HZT +1 !

which gives the total number of particles, as

ne) =3[ e'2de e (21)
B 25?”2 0 (e-W/kT g
3/2
and the energy po.5n [~ e de e (22)

_28?& 0 e{a—p)lk’r +1

To evaluate the integrals of equations (21) and (22) we should solve the integral of the type
= ¢e)de
I= .[ (E p.)!kT
where ¢(¢) is a simple function of € such that ¢(€) = 0 if ¢ = 0. Such integrals can be expanded
using the method of Taylor’s series expansion, i e.,

tI)(E) de 9 4 4
I=[" AT ] [0 ¢(e)d£+ " &) )y + 0(ifch) (9 WAL . (29)
where ¢,4", etc. denote the first, third, ... differentials of the function ¢. We shall confine

ourselves only to the first two terms of the expansion (23).
Observing equation (21), we write

oe) = 112
so that j“ ¢(e)de=—u3’2 [
and ¢ | ==pV/2
wn s )
Therefore we write equation (20) as
_.on | qm n’ 2.
"3 [, #©de + o kD% 4.
- £=.l_[
3n 2 39 m? 9 1 _
?12 _5” +5 T) XSH Wi
32 _ 3|2 g 7P s kT
o R Tl L)
or / 2[3u TR J+

-2/3
=u312ll+ [nkT} 2 }
s\ n



gving 1

t‘f

IHI{
8
4[

12

Pl ’
aking nto consideration

) 0

"l“ - E“'f l PR,

1" 12

ipf ]

/ (1[

neglecting higher order terms.

Thus ‘1‘; - 'E? 1+ l[
neoef| 6

kT

kT

]2 ‘
] "

I

.. (24)
J

only the first two terms of the expansion. We can write

kT
1

(27|
fl

1

nkT

M

nkT
u

We make here a crude approximation by putting p = €/ in the second term on right side of

above equation

' 2
Lﬁsz “l[—nkq .. (25)
ut gl BL %,
Now putting equation (25) in equation (24), we get
n=¢y 1——(rtkT)‘2 l 1+—{MT}
E’r 6 E}r
[ 2

nkT |

STy .. (26)

neglecting the higher order terms.
Since

(23), as
E=

=

"’E

e

j" o() de +— (nkT)z ') | +..

e equation (22) involves the integral of the same type, we write, using the expansion

]

e=p



Now compressibility is given by
1w s _sm (ny¥
V0P, " 5| 32/3,473,2 [?]

_ 3“3??‘1 ( n]—-ﬁﬁﬂ
n4i3ﬁ2 Vv

It has been ob s . o
of an electron gas. served that the compressibility of alkali metals is close to the compressibility

g¢3. ELECTRON GAS :

A .metal can be considered to be composed of a system of fixed positive nuclei and a number
of mobile electrons referred to as electron gas.
To study the properties of an electron gas at low temperatures in the region T — 0 we shall

revise the earlier discussion. For electrons s:lE so that g, =2s+1=2, and therefore from

ST
I~ om\anv.e

equation (16) art. 9.0, we get

h2( 3n Al
it | B L (1
Bm[nV} 2
and from equation (18) art. 9.0,
3
EO :ETLEI’ LR (2)

Further, from equations (15a) and (16) of art. 9.0, we get g¢ = n, which means that in the

limit 7' — O each one of the states is occupied fully upto the energy level €; whereas all the states

above this energy level are empty.
From equation (13) art. 9.0, we can calculate the degeneracy factor for an electron gas. For

electrons m = Q.lxl()"‘:"8 gm. and g = 2, we get
¥ h® [ 3n )2!3
D 2x9.1x10 kT \81V
g a typical metal of atomic weight 100 and density 10 so that volume of gm. atom be

Takin
10 c.c. and the number of olectrons, assuming one free electron per atom, is 6.02x10%3, Then,
1_ (6.62x10727)? 3%6.02x1023 |
D 2x9.1x1028x1.38x1071¢ xT'| 8%3.14x10
_10
T 15T’

which means degeneracy is sufficiently high. It shows clearly that for electron gas, the classical

statistics is not valid and can be applied only at temperatures of the order of 10° K (because only



then D will approach unity). Therefore at low and other ordinary Wl:ll'lfiin%c }femrgz':lt;r?; i;; is
necessary to use Fermi-Dirac statistics to study the electron e lnb euation (i) art ;’W
temperatures electronic contribution to the specific heat of metals 1s g1Ven yed e

which is
CV = lnk T|:2 ["k—T-J
2 €f

But from equation (17) art. 9.0, we have

p=2L
Ef
1 2
so that Cy = Enk “D.

Using the above value of 1/D, we find that
Cy = %njwl:2 x1.5x107° x T

Putting nk = R, gas constant
=1.978 cal deg‘1 mol
=9 cal deg™! mol !

= =10,
we get electronic specific heat

Cy :%x1.5x10_5x2x10xT

=1.5x10"*xT cal/lgm. atom.
Pressure of the electron gas can be obtained from equation (19) art. 9.0 as

ne
P, = 218f
5V
‘ 2/
bt s |7
5V 2m|\ 4nVg,
20mV\gy ) ' oNE8s =2

For a metal of atomic weight 100 and density 10 (= n/V)

By ~ 10° atoms,

which means at normal temperature, the pressure of the gas is sufficiently high
Example 1. Calculate the Fermi energy in electron volt for sodiyum . -
. . : assu ne
From eq. (1) art. 9.3, we find that Fermi energy is given by = 23.



— il
, : elect -
©SCApe must come from x component of the electron’s motion. Only those Tons wil] ¢

: : © oy
which have got energy greater than (E, —¢/), the work function. Therefore, number of electrﬁns

arriving per second per unit area of the metal surface will be

ne=[" n,) v, dv
X x
I“I'(Ear’m] e
T
3 SimT e e MO
o
h @Egim)

_Ammk® o - (B¢ kT
h3

Therefore emission current density per unit area

2
—(E,-¢e;)kT
J=en. = 4mm ek T2 (Eq—€f
x h3
2
Putting A= Anm el
h3
and €¢ = (Ea '_Ef )!
we get J = AT2e oWhT

This equation is called Richardson-Dushman equation of thermionic emission. It was first

derived classically upon the assumption that the electrons obey Maxwell-Boltzmann statistics,
Its classical form is

of = “ﬁﬁ(kT)lm e~e¢|fkT
(2nm)
which differs from quantum equation in constant coefficient and in the power of 7 which
multiplies the exponential term.

9¢5. PAULI'S THEORY OF PARAMAGNETISM :

In metals free conduction electrons are
intrinsic magnetic moment I, it acts as an ele

elementary magnets, can orient themselves i

present. As each electron is endowed with an
mentary magnet. Thus al] free electrons, acting as

n the direction of i 2o :
make metals highly paramagnetic, ' @n applied magnetic field B and
Let us consider an assembly of N free fermi fo. & .
| | o ons of spin 51‘: each of which is described by a
single particle Hamiltonian,
2

H=2 &%
2m B

and the single particle energy levels

2

Eis =”§;I“USB



where S =+1. Therefore for the assembly of N free fermions labelled by the occupation numbers
n; s of the single particle levels, g; s can be written as

E”" =Z Z € s
L 8

where n; =01 . (2)
z Z nis= N
i s
If we write it for particles with spin %, then
Z n =N,
L
2 ma=N_=N-N,
i
then eq. (1) can be written as
p2
E, = Z (41 +1; 1) ———puB(N, - N_)
p?
=) (M, +n ) >—-uB (2N, -N) . (3)
i 2m
The partition function is given by
Zy= Y € P
n 413 T, -1
2 2
B3 p_"'z'. a1 —BX p_ni, -1
_ Z eBp_B(2N+—N) e i 2m e 3 2m L (4)

41 T, -1

where prime over summation implies that restrictions imposed by eq. (2) must be followed while
carrying out the summation, t.e.,

2 2
2 P
N, N " _BZ 9 My 41 5 _ﬂz "?‘-—lli' =4
Zy= Y PUBENN) S5 o i 5 > e 2 s 18)
N,=0 L | 1

where an arbitrary value for integer, NV,, has been selected and X" is subjected to restriction
Z na = N,
L

and X’ is subjected to restriction
Z nj1=N_=N-N,
i

so that eq. (5) can be written as



| 2
N ) _,E (N'—N+)

2
i £_N+ w
Zy = ¢ BHEN % (2 BuBN, % b ad -
N,=0 N,=0 N-N, . oless particles of mass m be deng
If the partition function of an ideal Fermi gas of V sPIn€ie ed
by Zy then
P2
N BL M _gy(N) 0
0 _ i 2m - _— o Y . 7)
Zy= e *
Zni=N
L
then eq. (6) can be written as
7 N 0 0 .
I = PN} o 2PHBN. Zy, ZN-N, . (8)
N;=0
! - ~By(N - N.)
1 1 2pu BN, —By(N+) —PY + e (9)
or g Zn = ~BuB+7log NZ=O e
+

ms (0 to N); the logarithm of this sum is

ion i i N + 1) positive ter :
i et 4 lus a contribution of the order of log A.

equal to the logarithm of the largest term in the sum p

1 .
Therefore, we neglect the term of order N log N and write
1 i
~logZy =Bf(N,),
where f(N+) = max. [f(N,]

f(N,) =w(2ﬁ+ —1}-%{y<N+)+y(N—N+)] .0 (10

N, gives the average number of particles with spin up. We proceed to find its value. For
maximum f(N.) we write the condition

AN,) _

oN, 0 at N+:N+
d 2N, 1
WB_ 13N, 1 Ay(N-N,))
or N N an o ———t -
N N oN, N on,
. w[a) o]
+ N+‘_'N+ aI\F+ N =N - - (11)

Refer to eq. (4) art. 3.2-2 (a),



o M W al Jds

Applying it to particles with spin up, N,, we have
'N ., 2 2
'l:log[__i] = WN,) = o _| PN, =P (see eqs. 7 and 9)
f ON, ON,| 2m | 2m
and to particles with spin down, N _. we have
N B 2
tlog{—; == WNN.) = _ay(N N,) e (see egs. 7and 9)
f dN_ d(N-N,) 2m

Therefore putting above equations in (11), we get

2M—Tlog{&}+tlog{ﬂljz(}
f f
OF lﬂg[giJ—lgg(i\l =_2_.__=2_|'L.§
f i T kT
or log & :y
N_ kT
or N = N 2HBIET

At B=0, B F =i

that is, when B=0, half the particles have spin up and the other half spin down. At low
BIKT 51 and consequently N, > N_, i.e., balance (N, + N_) shifts

temperature and for B>0,e
The magnetisation per unit volume will

in favour of spin up and a net magnetisation will result.

be given by
_ total magnetic moment

I=
volume
particle, net magnetisation will be

Since i is the magnetic moment of a

= j.L(N g ﬁ _)
WwN, -N.)
so that I= __+_V___-
easily gives the value of magnetic susceptibility.
9¢6. WHITE DWARFS : ’ |
A plot of brightness of stars against t}le pred'ommant
wavelength emitted is shown in fig. (2). This plot is Hertz T &
sprung — Russel diagram. It is obvious from the figure that most . ¥ ,;;\‘ Rgd
of the stars fall within a linear strip (showln by dottgd lines in @ \\‘9&‘\ Giants
the figure) indicating that the brightness is proportional to A. § A 5,@’;\
] p . t this 1 . = h o Whlte‘ \\%-
However, there are two glaring exceptions to rule (i) the - 3 B 2
red giant stars which are huge and abnormally bright and (ii) M
the white dwarf stars which are highly under-luminous. The g ?;——?
1. &



S=(S), . .3 T 2 nY? -.(10)
T=Ty 2nk log?—'+§><0.231>< 1*(?0] Rttt

. | 0
Integrating upto second term only.
We note that

2
(S)T < TO = E(CV )T <Ty

2 we find that Cy shows a sudden drop for the temperature below T; and

. : decrease |
entropy will also decrease suddenly. A decrease in entropy mea}?ei 0; artiil:gz
crease in order. We have seen earlier that at T < T,, a large num p

condense into the ground state (e=0) which is attributed to zero entropy (entropy
klog,1=0,since statistical weight of ground state is one). Since £ = p*/2m,e =0, implies p=0

and therefore we can say equivalently, that condensed particles condense in 'the momer:tum Space},
They acquire the same momentum p=0 and, thereby, create an ‘order In momentum space.

Therefore decrease in entropy implies that some sort of condensation is tak}ng plac&greateF 18
the decrease in entropy more is the acquisition of orderly state i.e., greater 1s the Fondensatlon.
For ground state, for which entropy is zero, it means, condensation is maximum or, In othe).':words
a large number of particles will rapidly fall into the ground state. As the ground state is alsj.o
characterised by p =0, Bose Einstein condensation is sometimes described as a ‘condensation in
momentum space’.

and from figyre

consequently,
disorder or in

8+4. LIQUID HELIUM

As an application of Bose Einstein statistics, we may investigate the qualitative nature of the
superfluid transition of liquid helium at 2.2K.

Ordinary helium consists almost entirely of

neutral atoms of the isotope ,He?. As the total T 401 Solid
angular momentum of these atoms is zero, their ’é‘ 201
discussion must fall under the jurisdiction of Z 25 Line of ietranisitior
Bose Einstein statistics. o 20 Liquid He | -
Helium exhibits peculiar properties at low 104 He I o .. Critical Point
It is found that A=2.186°K
temperatures. 1t 1s foun Y] RN WA
(i) helium gas at atmospheric pressure 0 ] 5 : . =
condenses at 4.3K (its critical temperature T°5K
being 5.2K) into a liquid of very low density, Fig. 3 Phase diagram of liquid H
about 0.124 gm.fcma. q e.

(ii) further cooling to about 0.82K does not freeze it and it 18 believ
all the way down to absolute zero. The solid state of helium
an external pressure of atleast 23 atmosphere. The phase di

ed that it remains liquid
does not. form unless it ig subjected to
agaram is shown in figure 3.
(iti) forHe'in liquid phase, there is another phase transition, calleq A-t it] i
divides the liquid state into two phases He I and II. K. Onnes, while liquef ; ranﬁdt_lon: el
that at about 2.2K, density ﬂPpeared to pass through an abrupt maximucrln e n‘)'fed
slightly thereafter. Investigations also revealed that critical temperature is a:gdlgé? de(c:ireﬁsmg
S , and that it

represents a transition to » 1w state of matter known as liquid He 7, i
was found that 1. In liquid He IT state, it



T
2) heat conductivity is very large of the order 3R ,
of 3.106 times greater, '{

) coefficient of 'v_'iscosity gradually diminishes
s the temperature 18 lowered, and appears to be Cv G

|
|
1
approaching zero at absolute zero temperature E
oh =1 :
(©) gpecific heat measurements by Keesom \
chow that specific heat curve, fig. 4, s ET-=2-186°K
discontinuous at 2.186K. The shape of the specific 0 )  —
heat curve resembles the shape of letter A and ! Z-ITJK 2 s
therefore this peculiar transition is called A- Fig. 4 Specific heat curve of liquid He

transition and the discontinuity temperature
9.186K, 1s CEHEd );;'.pomt Since experimentally it was found that at ‘A-point’ liquid He II state has
no latent heat, EI?STJm concluded that transition He I —Hell atT, is a second order
transition. The transition temperature decreases as the pressure is increased, tracking out A-line
in figure 3.
Explanation based on Bose Einstein condensation model : London’s Theory :
Explanation of these pecularities of liquid He at low temperatures, based on B-E statistics,
was given by London who suggested that He I is a liquid analogous to B-E gas and that
)-transition in liquid helium is the counter part of Bose Einstein condensation in the ideal gas. In
Bose Einstein gas, degeneracy 18
312
_1- = L(M) . (see equation 11 art 8.1)
D gV K
London suggested that helium atoms are light enough and though the density (n/V) of the
liquid is sufficiently high for the right hand side to be large and degeneracy to be well marked
but is low enough for the liquid to behave as & gas. He concluded this A-transition as a result of
Bose Finstein condensation and gave an analogy between A-point’ and Bose Einstein

condensation temperature To defined by equation (4) art 8.2, giving

onmk T, SIZV___ B Y
Bs| 7 12 F,5(0) 2612

h2
213
n’ _,,_’L._}
* To= 2nmk[2.612 Vg,

7 4cm® for a gram molecule of helium in liquid state,

In this expression, when we put V=2
we get T,=3.12K which is quite close to the observed value T = 2.186K for the A-point This
0 - -

and T, favours
ific heat curve at A-point, London suggested that similar

nd hence the existence of two liquid components He I

n explanation.
agreement in the value T, the London exp n
Further, for the discontinuity in spec
discontinuity occurs in the specific eat a

and He II ; tically explained- ; .
e IT is automaticaly &P being zero at 0.5K, is very well explained by Bose

Again, the decrease In entropy below Ty '
Einstein condensation becaus® in the latter, we have shown that at T < T, most o tlig particles
e ’

rapidly fall into the ground state which 1s characterised by zero entropy.
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Th"“g,h London approximated the properties of liquid helium so as to resemble with thoge
of Bose Einstein gas yet there is no reason to expect that liquid helium, with glutual interaction
between the particles, should resemble with perfect Bose-Einstein gas i any eI LR e,
Later on, Tisza introduced the two fluid hypothesis.

n-ﬂ o Fl B P e e 2 & e et e x i B ﬂl’ﬁﬁﬁ'h cnl INn ._
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