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The most striking llppLication of Ki rchhoff's I R \-\' was m ade in the explanation of Fra unhofer 

line5'. He assumed that th e s un cons ist s of glowi ng mass (g-i,ing the con tinuous s pectrum) 

s urrounded by a cooler atmosphere w}1jch conrains e lements li.ke hydrogen , nitrogen , s oclium , 

cesium. coppe r etc. in t h e gaseous state. Whe n raruat1o n from the centra l mass passes through 

th e s urrounding at-mosphere, the e lements. present there absorb those wavelength which thev 

can emit a t a higher tempera t ure. A s .'4 result, these wavelengths a r e missing from the s u~ 

spectrum and we_ see dark lines in their place. In this way Kfrch hoffs law establis h e d that atoms 

of each Plem en/ gwe a spectrum u. •h frh fr characteristic of thar elem ent alone. 

B-5. BLACK BODY RADIATION : 
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absorptivity is un it v for all wa~elenuths is c II dpar _isd tlrabnsl m1tted b_y the body . A body whose 
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bolometer and the deflection of the galua t . · • · 

th e intensity of each line. nam e .e, is proport10nal to 

The wavelength at different portions of th t e spec .rum was 

ca!culated by the _fo~mula for the dispersion of the material of the Fig. 3. 

pn~m._ By determ11:mg the intensity for various wavelengths in the whole spectrum of bl ack body 

radiatwn, a graph is drawn bet ween intensity and wavelength. The body was raised to differe~t 

temperatures and the distribution curve for each was drawn. The 

results are shown in fig. 4. It is observed that: 

(i) as the temperature of the body rises, the intensity of 

radiation for each wavelength increases . 

(ii) for any one temperature, energy is distributed 

continuously among the various wavelengths and is maximum for 

a particular wavelength. The point of maximum energy shifts 

towards the shorter wavelengths as the temperature increased. 

(iii) the total energy of radiation for given temperature is 

represented by the area between the curve and the horizontal 

axis. The area increases according to the four th power of absolute 

temperature. 

B-6. STEFAN BOLTZMANN LAW: 
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According to Stefan's law, the total amount of heat radiated by a perfectly black body per 

second per unit area is directly proportional to the fourth power of its absolute temperature, 

i.e., E oc T 4 or E = crT4 
, 

where er is a constant, called the Stefan's constant. This law is sometimes also called as Stefan's 

fourth power law. 
In the above form, this law refers only to the emission and not to the net loss. If a black body 

A at absolute temperature Tis surrounded by another black body B at absolute temperature T0 , 

then 

amount of heat lost by black body A = er T 
4 



nmount. of heat absorbed by black body A from black body B == <J To
4 

so net amount of heat lost by A per second per unit area == o(T
4 

- ri) 
This is also known as Stefan Boltzmann law. . ted cylinder with 
Thermodynamic Proof : Suppose the radiation is enclosed 111 an evacua . £ tl 

perfectly :reflecting walls and perfectly refl ecting moving piston. The object o_f a_ssumihng p~r ecthy • ·£1 t· • . 11 d th radiation ot erw1se e re .. ec mg walls 1s to av01d heat exchange between the wa s an e 
thermal capacity of walls will come in the calculation. . d 

Let u = energy density (energy per unit volume) of the radiation inside the cyhn er 
V = volume of the cylinder 
P = pressure of radiations 
Total energy of radiation= energy per unit volume x volume 

... (1) U=ux\l 
According To Maxwell's electromagnetic theory of radiation, the pressure P exerted by 

radiation is given by 

1 
p ==-u 

3 
... (2) 

Let us suppose that a small amount of heat dQ is brought into the cylinder and at the same 
time the volume is changed by an amount dV. If dU is the change in the internal energy of 
radiation and dW the external work done, then according to first law of thermodynamics, 

dQ=dU+dW 
=dU+pdV. 

From equations (1) and (2) substituting the values of U and pin equation (3), we have 

dQ = d(uV) + !udV 
3 

1 = udV + V du +- udV 
3 

4 
=-udV + V du. 

3 
According to second law of thermodynamic, we get 

dQ=TdS 

so that 4 
T dS = 3 u dV + V du 

or 4 u V dS = -·- dV +- du 
3 T T . 

Considering Sas a function of (V, u) i.e., S = f (V, u), we have 

as ~(!t)av +(!~)au 
Comparing equations (4) and (5), we have 

(!t)=1-; and (as)= v 
\du T. 

Again 

... (3) 

. .. (4) 

... (5) 



i. e., 

4 1 
-·--
3 T 

Integrating 

or u = aT4 
' 

v,1here a is the integration constant. 

We know that the energy E radiated per second per unit area from a perfectly black body at 

absolute temperature T, and the energy of radiation u inside an enclosure at the same 

temperature, are related by 

where c is velocity of light. 

1 
E=-uc 

4 ' 

Substituting the value of u in this expression 

E = .!..acT4 

4 

E = crT4
. 

where cr = .!..ac and is called Stefan's constant. This is Stefan's law. 

4 

Ex. I. A black body at 500°C has a surface area of 0.5 m
2 and radiates heat at the rate of 

1.02 x 104 J/s. Calculate Stefan's constant. 

According to Stefan's law, the total heat radiated per second by a black body of surface area A 

and at temperature TK is given by 
u 

u = crA T 4 or cr = --
AT4 

Substituting the given values, we get 
1.02 x 104 joule/sec 

cr= 
0.5 m2 x (773 K)4 

= 5.7xl0-8 joule (m2-sec.K4
) 

8 7. WIEN'S DISPLACEMENT LAW: 

When radiation from a black body is passed through a prism, a continuous spectrum is 

obtained in which the intensity of radiation in different parts of the spectrum is different. The 

energy is distributed in various wavelengths varying from zero to infinity. The law that connects 

the intensity with wavelength is known as the law of distribution of intensity of black body 



B-8. PLANCK'S RADIATION LAW: l . h J ans formula could 
Planck's quantum hypothesis : Wien displacement law_ an~ R~y e~g bl=ck body radiation. t 1 · h · · · th rgy distributwn ill no exp amt e entire shape of the curves givmg . e ~ne . bla k diation chamber is To explain the entire shape, Planck, in the beginning imagrned that a _:. rtagas This time he . 1 -ul of a penec · filled up not only with radiation, but also with the mo ec es . . d gas molecules and 

assumed that the exchange of energy can not take plac~ betw~en radi~ti:e~a between radiation hence introduced the idea of resonator of molecular dimenswn as uza c tl or wholly to and gas molecules The resonators absorb energy from radiation and trans1er pbar y 'bl fi · posed to e respons1 e or the molecules when they collide with them. These resonators were sup h . b • the emission of radiation. They could have all possible values of energy a nd t ~IT ;um er; 
determined by Maxwell Boltzmann distribution law. The distribution law thus denv~ com~~ 

0 

be the same as given by Rayleigh and ,Jeans. Planck therefore, gave a new revolutwnary 1 ea 
which laid the foundation of the modern quantum theory. k 

1 According to quantum theory, the exchange of energy by resonators does not_ ta e P ace 
continuously but discontinuously and discretely as an integral multiple of small umt of energy 
called the quantum or we can say that the resonators will emit energy only when the _energy absorbed is a certain minimum quantity£ or integral multiple of£. Thus a resonator wh1ch has 
an energy (r + p) £ [r = whole number, p = a fraction] will remain quiescent until the ene!"gy 
absorbed amounts to (r + 1) £ when the energy£ may be emitted and resonator may revert back 
to the state with the energy r £. Thus the resonator can vibrate with integral energy 0, £, 2 £ ... 
n£. On this basis the law of thermal radiation was derived. 

Number of resonators per unit volume lying in the frequency range v and v + dv : 
In accordance with the electromagnetic theory, the radiation is supposed to consist of a number 
of waves. If we consider the radiation to be enclosed in a box then the waves in the box travel in 
all possible directions and undergo multiple reflections from the various walls of the box. A 
reflected wave interferes with the corresponding incident one to form stationary waves with walls 
as nodal planes. The formation of stationary waves can be understood by an analogy with the 
vibrations of a stretched string with fixed end points. As we know that, in this case, only certain 
discrete frequencies of vibration are followed. The end points of the string are two nodes of the stationary vibrations. If L be the length of the string then allowed wavelengths are 

, 2L 
A=-; n=l, 2, 3, ..... . oo 

n 
Correspondingly, the allowed frequencies are 

c nc 
V= - =-· n=l 2 3 oo A 2L ' ' ' ' .... 

where c is the speed of the waves . 
Every allowed frequency is called a mode of vibration. We can calculate the all d d f ·b · · ·d h b ,1 owe mo es o v1 ration ms1 e t e cu e (of volume L' ) just as in the case of strin for whi h h • . be extended to three dimensions. The wave equati·on 

1
.n d. . g . c t e analysis 1s to one 1mens10n 1s a2

u* 1 cJ 2u* 
ax2 =~ ·7, ... (1) 

where u* (x, t) represents the displacement of th t · • . 
the velocity of wave propagation. The solution of eb s rmg at ~ diStance x at any instant t and c is a ove equat10n (1) is given by 

u* (x t) - A · ( n ru: ) ' - sin - cos2nv t L n • 
... (2) 



where L be the length of the string between fixed ends and let n be positive integer greater than 

or equal to 1. The wavelengths and frequencies are given by 

'A. = 2L and v = ~ = nc . 
n n n "-n 2L 

The number of possible modes of vibration in frequency interval dv is given by 

dn = ( 2: )dv. . .. (3) 

Extending the above case to three dimensions, the wave equation is 

au* iJ 2u* a2u* 1 a2u* 
- +-+-=-·--, ... (4) 
dx 2 iJy2 az2 c2 ot2 

then its solution will be 

u* (x,y ,z, t) =A sin( n~nx) sin ( n~xy) sin( nf )cos2nvt 

where nx, ny and nz are greater than or equal to 1. 

Substituting equation (5) into equation (4), we get 

(~: )rn! + n; +n;) = 
4::v' 

... (5) 

2 2 2 4L2v2 
or nx +ny +nz =-

2
-· ••• (6) 

C 

From equation (6) it is obvious that in three-dimensional cases the wavelengths and 

frequencies are determined by three integers nx, ny and nz. Each choice of nx, ny and nz 

corresponds to a particular mode of vibration (frequency). The total number of frequencies is the 

total number of possible sets of nx, ny and nz. The number of modes of vibration within 

frequency interval v and v + d v can be found with the help of equation (6). 

It can be shown that the number of modes within the frequency range v to v + dv is the 

volume of an octant ( ½th J of spherical shell with radii equal to 

2Lv and 2L (v + dv) 

C C 

This volume is 

_!_ . 4nr2dr = _!__ _ 47t (2Lv)
2 

2Ldv 
8 8 C C 

41tL3v2 

= 3 
dv. 

C 

But L3 is the volume V of the cube. Therefore the number of mod inside the cubical enclosure 

IS 

= 41tVv2 dv • 
ca 

Since electromagnetic wa:e~ are transverse waves, there are two possible polarizations for 

each mode. Therefore, for rad1at10n, total number of modes of vibration (or frequenc·e ) b t 
d d 

. 1 s e ween 
V an V + V IS 



= 2 x 41tVv2 dv 
c3 

81tVv 2 
d ... (7) 

= 3 V. 
c· . . e energy for resonator can be Derivation of law : Using the Jaws of probability the averag 

esti mated as follows : . d with resonators According to the laws of probability, the modes of vibration associate 
having energies 0, £, 2e, ..... m: are in proportion 

--Or! Eo -e!Eo -2e!Eo ,e-3e!Eo etc. e , e , e •······ 
that is 1 - ct Eo - 2e / Eo - 3e / Eo etc , e ,e ,e ...... • 

where E0 is an arbitrary constant. 
Let N = number of resonators with zero quantum energy 

M = total number of modes of vibration, 
then M = N + Ne- et Eo + Ne-2r.1 Eo + ····· 

= N[l + e- r.t Eo + e-'a t Eo+ .... . ] 

N 
=----

1-e- EI Eo 

since [1 + e - £1 Eo + e -2
e
1 Eo ... .] represents an infinite geometric progression. 

Total energy E of all the M modes will be 

... (8) 

E=Nx0+£xNe-r. t Eo +2£ x Ne- 2r. 1Eo +3£xNe-3E1Eo + ..... . 
= N£e-r.lE0 [1 + 2e-r.1Eo + 3e-2r. lEo + .... +oo) 

= N,e_, , Eo [ (1-e-~' Eo )' l ... (9) 

Putting the value of Nin terms of M from equation (8), we have 
M [1-e-e/Eo]Ee-e/Eo Mee- r.!Eo 

E=--------=----(1 _ e - e I Eo )2 (l _ e - El Eo ) ... (10) 
The mean energy of the resonator is given by 

- E Ee- el Eo 
U =-=----

M ( 1 - e - e' Eo ) [from equation (10)] 
£ 

=-:-----
(ee/Eo -1) .. . (11) 

According to kinetic theory E0 = kT. Then eq. (11) is 

U= £ 

er.lkT -1 ... (12) 
Comparing expression (12) with Wien's displacement 1 

to v · we write £ = hv where his called the Planck's co t awt' ~e. see that E must be proportional ' ns an , g1vmg - hv u = -;-:----
(ehv I kT -l) 

Using the classical statistics, he deduced that 



87tV2 -
uv dv = ~dv Uv. 

C 

where u v is density of v radiation, and U v is mean energy of resonator emitting v radiation. 

Therefore 

We know that 

so that 

which is Planck's law. 

uvdv = 81tV2 . hv dv = 81thva dv 
c3 (ehvlkT - 1) c3 (ehvlkT -1) 

C 
V=-

A 
or C 

dv =--dA 
A,2 

81thc dA 
u,._dA=-- ·----

A5 ech!AkT -1' 

... (13) 

... (14) 

For short wavelengths ehc t 'A.kT becomes large compared to unity so that Planck's formula 
reduces to 

dA = 81thc . dA 
u,._ A 5 ech/JzT'A. 

= 81thcA- 5e-chlkT"A. X d'A 

= AA- 5e- an..T. d'A 

where A and a are constants. 

u')..,d'A = A'A- 5e- an..T_d'}... 

which is Wien displacement law. 

Ex. 1. Calculate the average energy of an oscillator of frequency 5.6 x 1012 second at 
T = 330 K, treating it as (i) classical oscillator, (ii) Planck's oscillator. 

The average energy of a classical oscillator is given by 

kT = (1.380x10- 23)x330 

= 4.554 x 10-21 joule. 

. . b hv 
The average energy of Planck's oscillator is given y (ehvt kT - 1) 

(6.626 X 10-34 ) X (5.6 X 1012 ) 

-{ ( 6.626xlo-
34 J } 

exp. l.380x10-23 x330 -l 

= 2.9450 x 10- 21 joule. 

B 9. RAYLEIGH JEAN'S LAW: 

The deduction of Rayleigh's formula for the distribution of energy in the normal spectrum has 
been done by assuming that the energy is equally divided among all the possible modes of 
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IDEAL FERMI DIRAC GAS 

I F · o· d' ·b · · f 'd · z · dependent non-interacting n erm1- rrac 1stn ut10n, we consider a system o i entica , in ' . . 

particles sharing a common volume and obeying antisymmetrical statistics so that the s~m ~s 
half-integral (fermions) and then according to the Pauli principle, the total wave function is 

antisymmetrical on interchange of any two particles. 

9-0. ENERGY AND PRESSURE OF THE GAS : 
Particles with half-integral spin like electrons, protons and neutrons are fermions that obey 

Fermi-Dirac Statisitcs. The general expression for the most probable distribution-in-energy for 

the Fermi-Dirac gas is , 
g -

ni = a+p:. , (Eq. 12 art 6. 3) 
e i +1 

which, on putting D =ea, is of the form 

g -
n · = i (l) 

i DePEi + 1 ... 

Since in the denominator factor + 1 occurs, a need not be restricted to positive value only but 
may assume negative value as well unlike Bose Einstein gas. 

f 
The number of one particle states lying between momentum p and (p + dp) is determined 

rom 

(4n/ 3).p3 

gp = gs 
3 

, (Eq. 1 art 6.10) 
h IV 

giving 
4nVp2dp 

gpdp = gs 3 ' 
h ... (2) 

where gs = (2s + 1) is the spin degeneracy factor (arising due to the spin 8 f th c . 
, , 0 e 1erm10ns). 

Since £ = p2 I 2m and dp = .!_ ✓(2m I e) . de, the number of states in th 
2 e energy range between 

£ and (E + de) will be, on using equation (2), 

4nV ,_ _ _ 
g(E) d£ = g5 - 3 

.2me. ✓(m I 2e) . de, 
h (o . .. u) 

where g(E) is termed as density of states function. 

From equations (1) and (3) we get the number of particles in t h 
e energy r 

(E + dE), as ra nge between e and 

(306) 



where we have substituted 

Let us put 
and 
equation (4) then becomes 

.:JV I 

dn(E) = g 41tm V ~ £1/2d£ s 3 -v(2m).----
h DeElkT +l ... (4) 

1 ~=-kT' 
x = £1 kT , 

dx = de! kT. 

dn = 4nm V ~ x112dx (kT)3l2 gs· 
3 -v(2m).--__;___.:,__ 

h Dex +1 

= gs· l:__(21tm2kT)312 V. x112dx 
✓n h Dex +1 

From the thermodynamic properties of diatomic partition function is molecules, we note that translational 

It follows then 

z = (21tmkT)
312 

t 
2 .V. 

h 

dn = 2gsZt xll2dx 
✓n Dex +1 

Therefore total number of particles 
2g Z x112dx n = J dn = s t J oo 
✓n O Dex +1 

and energy E = J E dn = kT J x dx. 

= hT. 2gsZt f oo x3l2dx . 
✓n o Di' +1 

... (5) 

. .. (6) 

We shall evaluate the integrals in equations (5) and (6) for both values of o., i.e., when o. is positive and again when it is negative. When a is positive, D is greater than one and the condition so obtained is referred to as slight or weak degeneracy. Condition corresponding to o. 
negative i. e., D less than one is referred to as strong degeneracy. 

(A) Case of Slight Degeneracy : 
For this case, integral in equation (5) can be expressed as 

Jo
oo xll2dx = Joo xl/2dx. e-x (1 + e-x ]-1 

Dex +l o D D 

oo 1/2 e-x [ e-x e-2x ] = J x dx.- 1--+---o D D D2 .... 

1 J 00 1/2 -x 1 J 00 

/ 1 = - x e - dx -- xl 2e- 2xd Joo 1/2 -3xd D o D2 o ,x + D3 o x e x - .... 



✓re[ 1 1 ] = 2D 1 2312 D + 3312 D2 - . . . ' 
so that total number of particles is given by 

n = g~, ( 1 z31~ D + 331; Dz - .. J ... (7) 

Further, the integral in equation (6) can be solved as follows: 

Jooo x3l2dx 1 f 00 3/2 -xd l f "° x3l2e- 2xdx+ ... ---=- X e X--Dex +1 D o D2 o 
3✓rc ( 1 1 J = 4 D 1 - 2512 D + 3512 D2 - . .. 

so that the total energy is given by 

E - 3gsZt, kT(l - 1 + 1 ···J - 4D . 25/2 D 3512 D2 
... (8) 

Putting the value of g
8
Zt from equation (7) into equation (8), we get 

3 ( 1 1 J ( 1 1 J- l E = 2 nkT 1 2512 D + 3512 D2 - .. . 1 23/2 D + 3312 D2 

= ~nkT(1 + 51~ 
51 : 2 + ... J, 2 2 D 3 D 

which assumes the form E = ~ nkT I 1 + :12 (-n-J- :,2 (-n-J2 

+ .. ·], 2 l 2 gsZt 3 gsZt ... (9) 

after putting D = gsZt from equation (7) which has been approximated only upon the first term 
n 

of the expansion. 
The pressure of the ideal Fermi gas can now be obtained by the relation 

P- -(aEJ 
av r.s 

2E = 
V 

nkT I 1 1 ( n J 1 ( n J
2 

] = vl + 25/2 gsZt - 35/2 gsZ, + ... ' 
in which nk = R, for one mole of the ideal Fermi gas. 

... (10) 

We infer from equations (9) and (10), that ideal Fermi gas d . d h . d . . k 
ev1ates from £ t 

behaviour an t 1s eviat10n, as we now, is called degeneracy Ob . per ec gas 1 -x . 
· viously, degeneracy is a 

function of - or e . Smaller 1s the value of Dor greater the val f 1 D 
ue O D, more marked will be 

the degeneracy. 



(B) Case of Strong Degeneracy : 

When a is large and negative, e-a >> 1 or Dis much less than one. This increases the value 
1 

of D and hence the degeneracy will become more prominent. Further 

1 n f . ) 
D 

:::: -z , rom equation (7 , 
gs t 

n h3 

--. ' 
gs (2nm kT)312 V 

... (11) 

which shows that a gas will be highly degenerate at low temperature and high density (; )- We 

shall discuss this case of strong degeneracy at two temperature ranges : firstly when T = 0, i.e., at 

absolute zero and secondly when temperature is above absolute zero but degeneracy is still 

considerably high i.e. , Dis still less than unity. 

(i) At T = 0 From equation (11) we note that when T = 0, D = 0 so that equation (5) 

assumes the form 

n = 2gsZt f oo xl/2dx 
✓n 0 

Since D = 0, we can replace the upper limit by 1/D. Therefore 

2gsZt f 1/D 112d - 2gsZt _2_ 
n = ✓n o x x - ✓n • 3D3!2 

which gives [ 

112 ]2/3 1 3n 7t 

D 4gsZt 

with J
3/2 

-(21tmkT V 
Zt - h2 .. 

we find that 
2 ( J2/3 l h 3n 

D = 2mkT 4nVg
5 

' 

• · f degeneracy of the ideal Fermi gas at T = 0. 

... (12) 

... (13) 

which 1s a measure o . . 

t . (6) we can obtain the energy of the Fermi gas at absolute zero. Puttmg E as 
From equa 10n 

Eo and D = 0 in equation (6), we get 

E - kT 2gsZt f oo x3l2dx 
o- . ✓re O ' 

h E • t rmed as zero point energy of a highly degenerate Fermi gas. Replacing again the 
w ere O 1s e . 

1. ·t b l/D and solving the integral, we arrive at 
upper 1m1 Y 

2gsZt 2 
Eo = kT. c 512 ' 

v1t 5D 



which, o=n~ u-=-s1:·n_g_e_q_u_a_ti_·o_n_(_l_3)_ b ___________ _ 

' :o~:~ 2g,.Z, ~[ h2 ( 3n ]

2131
512 

o . J;, . 5 2mkT 41tV gs 

]

312 2 [ h 
2 

( 3n J ~ kT. ~ ( 21t:/T Vx3 2mkf 41tVg, 

2/3 

3nh
2 

( 3n J 
= 10m 47tg

5 
V 

and the corresponding zero point pressure will be 

Po=~ Eo 
3 V 

( J
2/3 

n h2 3n 
= V 5m 41tg

5
V 

2/3j5/2 

... (14) 

... (15) 

From equations (14) and (15) we find that a highly degenerate Fermi Dirac gas would have a 
residual zero point energy and pressure-the so called zero point pressure--even at the absolute 
zero of the temperature, quite unlike a Bose Einstein gas where all the particles are condensed to 
the ground state with c = 0 at T = 0. 

Expression of E and Pin terms of Fermi Energy Et : 

From equation (3), the total number of energy states lying between O and specified value 
E / can be obtained as 

- 21tV (2 3)1/2 f Et gr-ff -- m 
s h3 o 

or 
41tVg 1 g f = , s (2m E )3 2 

3h3 f ... (15a) 

Further, in Fermi Dirac distribution, not more than one particle is to b · d b · 
cell which is also obvious from e occupie Ya given 

n· £ 

gi 

D/tlkT +l' 

which gives ni = gi, since at T= 0, D = O. 

or 

Therefore taking g f = n, we write 

41tVg 
n = s (2m£ )312 

3h3 f 

- h2 ( 3n J2/3 £1-- ---
2m 41t Vg

5 ... (16) 



---- -· . - ·.I .. L.l,r cu., Uct::, 

where the qu ft . 
. an 1 Y Et 1s called the Fermi energy and it represents the energy of the highest level 

filled at T == OK r. . h . ,o, t e given assembly. 

From equations (13) and (16), we find that 

1 Er 
D= hT' 

and from equat· (l 4) 
ions and (16), zero point energy is 

Eo = 3nh
2

. 2mcr 
10m h2 

3 
= 5n Er, 

and finally from equations (15) and (16), we arrive at 

Po=.!!_. h2. 2mcr 
V 5m h2 

2 nEt 
-s·v 

If we define the Fermi temperature as 

kT1 = Et 

equation (I 7) becomes 

1 _ Tr 
D-T, 

from which we conclude that gas is degenerate when T << T1. 

... (1 7) 

... (18) 

... (19) 

(ii) At T above absolute zero but D << 1 : From eq. (4), the number of particles lying in 

the energy range between E and (E + dE) is 

41t m V E
112d£ 

dn(E) = gs 3 J(2m) elkT 
h De +l 

We have seen in chapter 6 Art. 6.10, that 

D =ea= -eLµ/kT 

(
41tVgs)[2m

3
J

112 

E
112

dE 

dn(£) = 3n. 3n ~ . /e-µ)lkT + 1 . 

But from equation (16), 

giving 



so that 
d ( mE / 2m -~£ ---:-::=;---

( 

2 

]

- 312 { 3 }112 112d£ 

n E) = 3n. 1(2 . ~ e<e-µ)lkT + 1 

3n £
112 dE ... (20) 

- 2E3/2. /e-µ)/kT + i' 
h' h · / 

w ic gives the total number of particles, as 

3n f 00 E
112 

dE n(E) = -- ----=-, 
2E3/2 o /e-µ)/kT + 1 

f 

... (21) 

and the energy E 3n f 00 e
312

de ... (22) 
= 2E3/2 O /e-µ)lkT + l . 

f 
To evaluate the integrals of equations (21) and (22) we should solve the integral of the type 

I = f 
0

00 <j>(e) dE 
/e-µ)lkT + l ' 

where <l>(E) is a simple function of e such that <j>(E) = o if e = 0. Such integrals can be expanded 

using the method of Taylor's series expansion, i.e., 

J 
00 C!>(E) de J µ 1t2 

2 71t
4 

4 
l= 

0 
( )lkT = <j>(e)dE+-(kT) (<l>\=µ+-(kT) (cl>Je=µ+ ... , 

e e-µ + 1 ° 6 360 
... (23) 

where <I>', <l>"', etc. denote the first, third, ... differentials of the function q>. We shall confine 

ourselves only to the first two terms of the expansion (23). 
Observing equation (21), we write 

q>(E) = el/2 

so that J µ cp(E) de= ~µ 312 
0 3 

and 

or 

q,'(E) I = !µ-1/2 
E=µ 2 

Therefore we write equation (20) as 

n = 
2
::,2 [ f; ,P(E) de + : (kT)

2 .p' + .. ·] 
/ E=µ 

n = ~[~µ3/2 + 7t2 (kT)2 x _!_ -1/2 ] 
2Ef 2 3 6 2 µ + .. ' 

E3/2 = ~[~µ3/2 + 1t
2

. 3/2 (kT) ] 
/ 2 3 12 µ µ + ... 

=µ312[1+_!_(1tkT)2 ]-213 
8 µ + ... 



f{ivi n~ ~I 1 l rt"J..·'11 J2 j-:U:3 
- = ] +- -- + 

f / H ~I .. . 

== 1 _ _ 1 ( nk T )
2 

+ ... 
12 ~· 

. .. (24) 

'I"' k . · n m g mto ('0n9ido. t · I 1 .. . . · "' In .1011 on y t. lC' hrst two terms of the expans10n. We can write 

1 2 l 1 ( rrk T )
2 

]

2 

~l = f/ 1-- --
12 µ 

2 1 nkT l 2] ~ rr i-s(-µ-) . 
neglecting higher order terms . 

Thus µ\ ~ £1,ll+¼(~Tn 
We make here a crude approximation by putting µ=Et in the second term on right side of 

nbove equation 

... (25) 

Now putt ing equation (25) in equation (24), we get 

[ { ( ]2} ] 1 2 1 1 1tkT 
µ=Et l--(1tkT) .2 1+- -- + ... 

12 E/ 6 £/ 

= E / [l -_!__ ( 7t~ T ]2 - .. ·1 · 
12 E/ ... (26) 

neglecting the higher order terms. . . 
Since equation (22) involves the mtegral of the same type, we write, using the expansion 

(28), as 

E = 
3
; 2 [ f ~ <l>(E) de+ ½(rrkT)2cp'(e) I + ... ] 

2£/ E=µ 



I 
Now compressibility is given by 

_I_ av _ 3[ 5m ( n ) - 513] 

V. aP0 - 5 32131t4131i2 V 

= 31/3 m (.!!:_)-5/3 
TC4l31i2 V 

It has been observed th t th · ·1· 

f I t 
a e compressibility of alkali metals is close to the compress1b1 1ty 

o an e ec ron gas. 

9-3. ELECTRON GAS : 

f ~ .ret;l can be considered to be composed of a system of fixed positive nuclei and a number 

o mo 1 e e ectrons referred to as electron gas. 

To study the properties of an electron gas at low temperatures in the region T ➔ 0 we shall 

revise the earlier discussion. For electrons s = !:. so that g
2 

= 2s + 1 = 2, and therefore from 
2 

equation (16) art. 9.0, we get 

and from equation (18) art. 9.0, 

h2 ( 3n )213 

Et= 2m 4nV.2 

= h2 ( 3n )213 

Bm nV 

3 
Eo =-nEt 

5 

... (1) 

... (2) 

Further, from equations (15a) and (16) of art. 9.0, we get gt = n, which means that in the 

limit T ➔ 0 each one of the states is occupied fully upto the energy level Et whereas all the states 

above this energy level are empty. 
From equation (13) art. 9.0, we can calculate the degeneracy factor for an electron gas. For 

electrons m = 9.lxl0-28 gm. andg= 2, we get 

1 h
2 

( 3n )
213 

D = 2x9.lxI0-28 kT 81tV 

Taking a typical metal of atomic weight 100 and density 10 so that volume of gm. atom be 

10 c.c. and the number of electrons, assuming one free electron per atom, is 6.02xlo23_ Then, 

1 (6.62xl0-
27

)
2 (3x6.02x1023 y13 

D = 2x9.lxl0-28 xl.38x10-16 xT 8x3.14xl0 ) 

105 

=--, 
1.5T 

which means degeneracy is sufficiently high. It shows clearly that for electron gas, the classical 

statistics is not valid and can be applied only at temperatures of the order of 105 K (because only 



. . r working temperatures, it is th
en D will approach unity). Therefore at low and other ordma y 

8 
in the metals. At low 

necessary to use Fermi-Dirac statistics to study the elect~o~ g:ven by equation (1) art. 9.1 
temperatures electronic contribution to the specific heat of meta 8 18 g 
which is 

Cv = _!..nk n2(kTJ· 
2 £1 

But from equation (17) art. 9.0, we have 

D=kT_ 
£( 

so that 1 2 Cv =-nk 1t D. 
2 

Using the above value of 1/D, we find that 

Putting 

we get electronic specific heat 

1 2 0-s T Cv = -nkn xl.5xl x . 
2 

nk = R, gas constant 

= 1.978 cal deg- 1 mol-1 

= 2 cal deg- 1 mol-1 

n2 = 10, 

Cv = .!.x1.5x10-5 x2xl0xT 
2 

= 1.5xl0-4 xT cal/gm. atom. 

Pressure of the electron gas can be obtained from equation (19) art. 9.0 as 

R -~ nEt 
o - 5 V 

2n h
2 

( 3n ]
213 

= 5V 2m 4nVg
8 

nh
2 

( 3n )
213 

. = -- - , using g
8 

= 2. 
20mV 1tV 

For a metal of atomic weight 100 and density 10 (= n/V) 

P0 ~ 105 atoms. 

which means at normal temperature, the pressure of the gas is sufficiently high. 

Example 1. Calcul~te the Fer_mi energ! in electron volt for sodium assuming that it has one 
free electron per atom. Gwen: density of sod~um =0.9! gm.fem 3, atomic weight of sodium= 23. 

From eq. (1) art. 9.3, we find that Fermi energy 1s given by 



-~ , t' on Only those electrons w1U cotri escape must come from x component of the electron 8 mkof 
1 

t· i·on Therefore, number of el e 01.lt h. h h ) th wor unc . ec:tr 
w ic ave got energy greater than (Ea - Ef , e 0nJi · • 1 face will be arr1v1ng per second per unit area of the meta sur 

1 2 2) 1 2 - - m (vy +Vz 

( ]

3 - - mvxlkT f 00 f 00 

e 2 dvy dvz -2m erlkTi oo vx e2 dvX _ c,o - 00 - h e J( 2Ea lm ) 

= 41tmk2 T2 - <Ea-Er)lkT 
h3 e 

Therefore emission current density per unit area 

4nm ek2 2 - (Ea -£/ )/kT 
J = enx = h3 T e 

Putting A= 4nm ek
2 

h3 
and e<p = (Ea - £( ) , 

J AT2 - eq>lkT we get = e . 
This equation is called Richardson-Dushman equation of thermionic emission. It wa~ f~st derived classically upon the assumption that the electrons obey Maxwell-Boltzmann statistics. Its classical form is 

J = ne (kT)l/2 e- ect>lhT 
(21tm)112 

which differs from quantum equation in constant coefficient and m the power of T which multiplies the exponential term. 

S-5. PAULI'S THEORY OF PARAMAGNETISM : 
In metals free conduction electrons are present. As each electron is endowed with an intrinsic magnetic momentµ, it acts as an elementary magnet. Thus all free electrons, acting as elementary m~gnets, can orient _themselves in the direction of an applied magnetic field jJ and make metals highly paramagnetic. 

Let us consider an assembly of N free fermions of spin .!.h each of which is described by a 2 single particle Hamiltonian, 

H p2 - -· 
= 2m -µ.B 

and the single particle energy levels 

2 
Ei, s = ;m -µSB 



where S == ±l. Therefore for the assembly of N free fermions labelled by the occupation numbers 

ni, s of the single particle levels, Ei, s can be written as 

En == L L Ei , s ni, s 
i s 

where ni, s == 0, 1 

~ L ni,s ==N 
L S 

If we write it for particles with spin ±, then 

L ni, +I == N+ 
I, 

then eq. (1) can be written as 

p2 
En==" (n - 1 +n- _1)--µB(N -N_) 

L...i L, + L, 2m + 

p2 
== " (n - 1 + n- _1) - - µB (2N - N) 

L...i L, + t, 2m + 

The partition function is given by 

e- f3En 

n;, , +l; n;,, - 1 

== L 
Ti;, , +l; ni , - 1 

p2 p2 
-f3"" - n_, 1 -/3"" - n - - 1 

ef3µB(2N + -N) e "T 2m --i , + e "T 2m i , 

... (1) 

... (2) 

... (3) 

... (4) 

where prime over summation implies that restrictions imposed by eq. (2) must be followed while 

carrying out the summation, i.e., 

N, e/3 µB(2N + -N) ",, 
ZN= L L...i 

N+=O ni,+l ni,-1 

p2 
-/3 L - n - -1 , 2m l , 

e L ... (5) 

where an arbitrary value for integer, N+ , has been selected and 1:" is subjected to restriction 

and 1:'" is subjected to restriction 

" n - 1 = N = N - N L...i L,- - + 

so that eq. (5) can be written as 



2 

N N -P p2 N+ N -p L (N-N+) 

ZN= e-~µBN L e2PµBN+ L e 2m L e 2m ... (6) 

N+=O N+=O N-N+ 

If the partition function of an ideal Fermi gas of N spineless particles of mass m be denoted 

by zJ then 

p2 
-P ~- n;, _A (N) 

e i 2m = e ..,y ... (7) 

then eq. (6) can be written as 
N 

ZN 
= e-pµBN " e2pµBN + zO zO 

~ N+ N-N+ 
... (8) 

Ni=O 

or 
1 l z AµB 1 l ~ 2pµ BN+ -Py(N+)-Py(N -N+) 
-og N=-1-1 +-og ~ e 
N N N+=O 

... (9) 

Summation in eq. (9) contains (N + 1) positive terms (0 to N); the logarithm of this sum is 

equal to the logarithm of the largest term in the sum plus a contribution of the order of log N. 

Therefore, we neglect the term of order _!_ log N and write 
N 

1 -
NlogZN = P/(N+), 

where 

... (10) 

N+ gives the average number of particles with spin up. We proceed to find its value. For 

maximum /(N+) we write the condition 

or 

or 

or 

a/(N+) 

aN 
=0 N-

+ at N+ = + 

a!. {µB( 2
;• -i)- ![y(N.)+y(N-N.)]}=o 

2µB 1 a[y(N+)l - 1 a(y(N - N+)l 

N N aN+ N aN+ = 0 

2µB-[~~+l] _ -[ay(N -N+)] = 
0 

N+=N+ aN+ N _ _ ... (ll) 

Refer to eq. (4) art. 3.2-2 (a), free ene . +-N+ 
rgy per particle i e ch . 

= _ 
1 

( /) (-) ' · ·, emical potential is given by 
t og -= = tlog !!_ 

n f 
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Applying it to particles with spin up, N+' we have 

f aN+ oN+ 2m 2m 
tlog(N+J ay(N+) =- d-[p2N+]=£_ 

and to particles with spin down N h 
, _, we ave 

or 

or 

or 

tlog(N_ J = dy(N_) = dy(N - N+) = _ p
2 

f oN o(N -N+) 2m 

Therefore putting above equations in (11), we -get 

At B = 0, 

(N J (N \ 2µB - t log / + t log 
1
- j = 0 

log(N+J -log(N-J = 2µB = 2µB 
f f t kT 

I (
R+J _ 2µB og ---=- - --
N _ kT 

N+ = N_ e2µB!kT 

- - N 
N+ =N =

- 2 

(see eqs. 7 and 9) 

(see eqs. 7 and 9) 

that is, when B = 0, half the particles have spin up and the other half spin down. At low 

2µBlkT - - - -

temperature and for B > 0, e > 1 and consequently N+ > N_, i.e., balance (N+ + N_) shifts 

in favour of spin up and a net magnetisation will result. The magnetisation per unit volume will 

be given by 
I = total magnetic moment 

volume 

Since µ is the magnetic moment of a particle, net magnetisation will be 

=µ<ii+ -N_) 

so that 1 
= µ(N+ -N_) 

V 

easily gives the value of magnetic susceptibility. 

9•6. WHITE DWARFS : 
A plot of brightness of stars against t?e pre~ominant 

wavelength emitted is shown in fig. (2). This plot 1s Hertz 

rung_ Russel diagram. It is obvious from the figure that most 

~i the stars fall within a linear st~ip (show_n by dott~d lines in 

the figure) , indicating that t?e bright~ess 1s pr~port10nal_ to A. 

H Ver there are two glarmg except10ns to this rule : (1) the 
owe , . 
d giant stars which are huge and abnormally bright and (ii) 

::e white dwarf stars which are highly under-luminous. The ).~ 

Fig. 2. 



-
. . S = (S)Mo +: nk[log ~ +¾ x0.231x{1-(~ r }+ .. ] 
integrating upto second term only. 

We note that 

... (10) 

2 
(S)r < T0 = 3<Cv )r < r

0 

and from figure 2 we find that Cv shows a sudden drop for the temperature below To and 
c~nsequentl~, entropy will also decrease suddenly. A decrease in entropy means decreas_e in 
d isorder or increase in order We h 1· th t t T < T, a large number of particles . ave seen ear ier a a o, 
condense into the ground state (E = 0) which is attributed to zero entropy (entropy 

k loge 1 = 0, since statistical weight of ground state is one). Since E = P 2 I 2m,E = 0, implies P = 0 

and theref~re we can say equivalently, that condensed particles condense in the momentum spac~. 
They acquire the same momentum p = O and, thereby, create an 'order in momentum space · 
Therefore decrease in entropy implies that some sort of condensation is taking place-greater is 
the decrease in entropy more is the acquisition of orderly state i.e., greater is the condensation. 
For ground state, for which entropy is zero, it means, condensation is maximum or, in otherwords 
a large number of particles will rapidly fall into the ground state. As the ground state is also 
characterised by p = 0, Bose Einstein condensation is sometimes described as a 'condensation in 
momentum space'. 

8•4. LIQUID HELIUM 
As an application of Bose Einstein statistics, we may investigate the qualitative nature of the 

superfluid transition of liquid helium at 2.2K. 
Ordinary helium consists almost entirely of 
neutral atoms of the isotope 2He4

• As the total 
angular momentum of these atoms is zero, their 
discussion must fall under the jurisdiction of 
Bose Einstein statistics. 

Helium exhibits peculiar properties at low 
temperatures. It is found that 

(i) helium gas at atmospheric pressure 
condenses at 4.3K (its critical temperature 
being 5.2K) into a liquid of very low density, 
about 0.124 gm./cm3

. 

Solid -E 30 
$25 ---
a.. 20 

Liquid 
10 He II 

Line of ).-transition 
Liquid He I 

Critical Point 
TA = 2 .186°K_ / 

2.26 ~ 
o-----r--- ~-t-- ct====+=--+--

1 2 3 4 5 6 
T°K--.. > 

Fig. 3 Phase diagram of liquid He. 

(ii) further cooling to about 0.82K does not freeze it and it is b r d . 
all the way down to absolute zero. The solid state of helium does n te£ieve that it remains liquid 

o orm unles ·t. b" an external pressure of atleast 23 atmosphere. The phase diagar . h . s 1 1s su Jected to 
.. • 4 . • . . am is s own in figure 3 

(m) for He m hqmd phase, there 1s another phase trans· t · 
11 

· 
divides the liquid state into two phases He J and 11 K Onn 

1 
rnnh,.lca . ed A-transition, which 

· • es w 1 e hq f • that at about 2.2K, density appeared to pass through an abru t . ue Ying helium, noted 
slightly thereafter. Investigations also revealed that critical t P maxim~m and then decreasing . . emperature is t 2 represents a trans1t10n to :;1 rew state of matter known as liquid He a. · ~86K, and that it 
was found that II. In hqu1d He II state, it 



(a) heat conductivity is very large of the order 

of 3.106 times greater, 

(b) coefficient of ~iscosity gradually diminishes 

as the temperature is lowered, and appears to be 

approaching zero at absolute zero temperature, 

and 
(c) specific heat measurements by Keesom 

show that specific heat curve, fig. 4, is 

discontinuous at 2.186K. The shape of the specific 

heat curve resembles the shape of letter 'A, and 

therefore this peculiar transition is called 'A.

transition and the discontinuity temperature 

R 
I 
I 

:r,. = 2·186°K 
0 ,....___---4''-----4-..i..-----+----

2 T ;, 3 
T°K ) 

Fig. 4 Specific heat curve of liquid He 

2.186K, is called '"A-point' Since experimentally it was found that at ''A-point' liquid He II state has 

no latent heat, Keesom concluded that transition He I ➔ He II at T').. is a second order 

transition. The transition temperature decreases as the pressure is increased, tracking out 'A-line 

in figure 3. 

Explanation based on Bose Einstein condensation model : London's Theory : 

Explanation of these pecularities of liquid He at low temperatures, based on B-E statistics, 

was given by London who suggested that He II is a liquid analogous to B-E gas and that 

A-transition in liquid helium is the counter part of Bose Einstein condensation in the ideal gas. In 

Bose Einstein gas, degeneracy is 

-1 =-n (2rr,mkT)312 

D gsV h2 
(see equation 11 art 8.1) 

London suggested that helium atoms are light enough and though the density (n/V) of the 

liquid is sufficiently high for the right hand side to be large and de~eneracy ~~ be well marked 

but is low enough for the liquid to behave as a gas. He concluded ~his ~-t~ans1tion as a r~sult ?f 

Bose Einstein condensation and gave an analogy between A-pomt and Bose Emstem 

condensation temperature T
0 

defined by equation (4) art 8.2, giving 

(
21tmk To )312 V- n n 

gs h2 - F
312 

(0) 2.612 

or To= 2::k(2.61; Vg,r 
. . h t y = 27.4cm3 for a gram molecule of helium in liquid state, 

In this express10n, w en we pu 
. . 

h
. h . •t close to the observed value T').. = 2.186K for the 11.-pomt This 

we get T0 =3.12K w IC is qm e . 

. d T f vours the London explanation. 

agreement m the value T0 an ,., a . 

. . uit in specific heat curve at ~-pomt, London suggested that similar 

d
. Fui:t,h~r, for the ~iscontm ~ heat and hence the existence of two liquid components He I 

iscontmmty occurs m the spec~ IC 

and He II is automatically explamed. . . 

. . t y below T,.,, bemg zero at 0.5K, 1s very well explained by Bose 

Agam the decrease m en rop 

E
. . ' . . the latter, we have shown that at T < T0 most of the particles 

mstem condensat10n because, m . 

• d t which is characterised by zero entropy. 

rapidly fall into the groun sta e 



c1t:111.:;111.ui•, - - - -
. to resemble with those 

Though London approximated the properties of liquid hehum _so as with mutual interaction 
of Bose Einstein gas yet there is no reason to expect that liquid ~ehum; any important respect. 

E. te1n gas in between the particles, should resemble with perfect Bose- ins 
Later on, Tisza introduced the two fluid hypothesis. 
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