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Real molecules do not obey exactly the laws of simple 
harmonic 

motion. The bonds in real molecules 

are 
known as real bonds. Although, 

for small expressions, 
and extensions, 

real bonds may be considered 

o be perfectly 
elastic, obeying 

Hooke's law, yet at larger 
distortions they 

deviate from the behaviour of 

Hooke's law 

oscillator and undergoes 
extensions and compressions. 

In the same figure, a dotted parabola is there 

which is due to an ideal diatomic 
molecule obeying ideal simple 

harmonic 
motion. 

Fig. 3.4 shows the encergy 
curve for a typical 

diatomic real molecule 
which behaves as 

anharmonic 

In order to explain the energy 
curve due to a real molecule, P.M. Morse invented a purely empirical 

expression 
known as Morse function 

which is as 
follows: (3.21) 

E -D1- * 
Dthe 

dissociation energy for a particular molecule 

a a constant for a particular diatomic molecule and 

rethe value of internuclear distance which corresponds to a minimum of Morse curve. where 
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Flg. 3.4 
When equation (3.21) is used in the Schrodinger's equation, the values of allowed vibrational energy 

levels are as follows: 

E-v+4) hc W,-{v+4)hcx w+(v+%* hcy w, +.. (3.22) 
where equilibrium frequency of the molecule expressed in wave numbers, and, xy,..= the anharmonic 

constants. 

The selection rules for all the tran_itions in anharmonic oscillator may be given as: 

Av = +1, +2, +3,.. 
for these transitions in which 
) v=l to v=0 gives fundamental band. 

(i) v-2 to v-0 gives first overtone (second anharmonic) 
ii) v=3 to v=0 gives second overtone (third anharmonic), etc. 
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Tbe energy change when a transition resuits from an upper level v to the lower level v" will 

vee by 

236 
" will be 

(3.23) E-E (VY) he HV+1)-(V+1)) zhe we 

Tbe frequency of such resulting radiation will be 

.(E-Ehc (3.24) 

The vibradonal quantun number in the final state is always zero from which follows that 

(3.25) 
(3.26) 

,-( 4 (V+1)-+1] 

1)x]w 
= [14v-1lx]v. 

here v s the vibrational quantum number in the initial state. Thus, 

(3.27) 
() For fundamental band v=1 to v=0 

(1-27). 

(3.28) 
()For first overtoDe band v-2 to v-0 

(1-3r)2 
()For second overtone band, v-3 to v-0 

3(14x)3w 
(3.29) 

ere 2nd are the frequencies of the origins or centres of fundamental, first and second 

onernone respectively. As the frequencies of the first and second overtone bands are 2 to 3 times the 

freguency of the fundamental, they appear in the regions of shorter wavelength as compared to the 

fundamental band Tbese have been shown in Fig. 3.4. 

Diatomic Vibrating Rotator. In the earlier discussion it was assumed that a diatomic molecule 

behaves as harzmomic or anharmonic oscillator. But it seems natural to assume that the rotation and 

vbraon must take place simultaneously and in fact the observed fine structure of rotation bands reveals 

a simuianeous rotation and vibration do occur in such molecules. For this reason, a diatomic 

moiecule wl be considered which can execute rotations and vibrations simultaneously. Such a system is 

ermed as a rotating vibraor or a rotating oscillator. 

n and otation the total energy of the vibrating rotator would 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

