
FUNCTION

A FUNCTION IS SELF-CONTAINED BLOCK OF CODE THAT PERFORMS

A PARTICULAR TASK.

A function definition in C programming consists of a function

header and a function body. Here are all the parts of a function −

 Return Type − A function may return a value.

The return_type is the data type of the value the function returns.

Some functions perform the desired operations without returning a

value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The

function name and the parameter list together constitute the

function signature.

 Parameters − A parameter is like a placeholder. When a function

is invoked, you pass a value to the parameter. This value is

referred to as actual parameter or argument. The parameter list

refers to the type, order, and number of the parameters of a

function. Parameters are optional; that is, a function may contain

no parameters.

 Function Body − The function body contains a collection of

statements that define what the function does.

 FUNCTION NAME

 FUNCTION TYPE

 LIST OF PARAMETERS

 LOCAL VARIABLE DECLARATIONS

 FUNCTION STATEMENT

 A RETURN STATEMENT

A Function which invokes other function is known as calling function

and function which is invoked by other function is knows as Called

function.

Calling a Function

While creating a C function, you give a definition of what the function

has to do. To use a function, you will have to call that function to

perform the defined task.

When a program calls a function, the program control is transferred to

the called function. A called function performs a defined task and when

its return statement is executed or when its function-ending closing

brace is reached, it returns the program control back to the main

program.

To call a function, you simply need to pass the required parameters

along with the function name, and if the function returns a value, then

you can store the returned value. For example –

#include <stdio.h>

#include <conio.h>

/* function declaration */

int max(int num1, int num2);

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 /* calling a function to get max value */

 ret = max(a, b);

 printf("Max value is : %d\n", ret);

 return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;
}

OUTPUT : Max value is : 200

Difference between Function Definition and Declaration

 Function Definition

 There is no semicolon at the end of the closing paranthesis

of the parameter-list.

 The body of the function follows it.

 Mandatory for all functions.

 Function declaration

 There is a semicolon at the end of the closing paranthesis

of parameter list.

 The body of the function does not follow it.

 Optional for function returning int value.

Types of Functions

 Based on the nature of the creation, the functions are divides as

 1. User-defined functions and

 2. Built-in functions

Built-in functions are predefined and supplied along with the compiler

and these can be used in any C program. They are also known as Library

Functions.

Function Definition

 A function definition describes what a function does, how its

actions are achieved and how it is used. It consists of a function

header and function statements.

SYNTAX :

 Function type function Name (Parameters List)

 {

 Local variable declaration;

 Executable statement;

 Executable Statement;

 ……

 Return Statement

 }

The advantages of using functions are:

 Avoid repetition of codes.

 Increases program readability.

 Divide a complex problem into simpler ones.

 Reduces chances of error.

 Modifying a program becomes easier by using function.

There are very few disadvantages to using functions in C.

 Complexity of the program increases.

 Execution speed decreases.

 It requires a programmer must be expert in programming.

Category of Functions :

 Category 1 : Functions with no arguments and no return values.

 Category 2 : Functions with arguments and no return values.

 Category 3 : Functions with arguments and one return value.

 Category 4 : Functions with no arguments but return a value.

 Category 5 : Functions that return multiple values.

CATOGORY 1 :

SAMPLE PROGRAM :

/* FACTORIAL NUMBER USING FUNCTON*/

 #include<stdio.h>

 #include<conio.h>

 void main ()

 {

 int f, n, i=1;

 printf (“Enter the Number”);

 scanf (“%d”,&n);

 fun ();

 }

void fun ()

{

 int f=1, i;

 for (i=1; i <= n; i++)

 {

 f = f * i;

 }

 printf (“ The factorial number is “, f);

}

CATOGORY 2 :

/* BIGGEST VALUE OF THREE NUMBERS USING FUNCTION */

 # include <stdio.h>

include<conio.h>

void main ()

{

 int a, b, c;

 void big(int, int, int);

 printf (“Enter three numbers”);

 scanf (“%d %d %d “, &a, &b, &c);

 big (a, b, c);

}

void big (int x, int y, int z)

{

 int (x > y && x > z)

 printf (“ A is Biggest “);

 else if (y > z && y > c)

 printf (“B is Biggest”);

 else

 printf (“C is biggest”);

 }

CATOGORY 3 :

/* AREA OF A TRIANGLE USING FUNCTION */

 # include <stdio.h>

include<conio.h>

void main ()

{

 float x, y, c, area() ;

 printf (“Enter Base and Height”);

 scanf (“%f %f “, &x, &y);

 c = area (x , y);

 printf (“The area is %f”, c);

}

float area (float b, float h)

{

 return (0.5 * b * h);

}

