
FUNCTION

A FUNCTION IS SELF-CONTAINED BLOCK OF CODE THAT PERFORMS

A PARTICULAR TASK.

A function definition in C programming consists of a function

header and a function body. Here are all the parts of a function −

 Return Type − A function may return a value.

The return_type is the data type of the value the function returns.

Some functions perform the desired operations without returning a

value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The

function name and the parameter list together constitute the

function signature.

 Parameters − A parameter is like a placeholder. When a function

is invoked, you pass a value to the parameter. This value is

referred to as actual parameter or argument. The parameter list

refers to the type, order, and number of the parameters of a

function. Parameters are optional; that is, a function may contain

no parameters.

 Function Body − The function body contains a collection of

statements that define what the function does.

 FUNCTION NAME

 FUNCTION TYPE

 LIST OF PARAMETERS

 LOCAL VARIABLE DECLARATIONS

 FUNCTION STATEMENT

 A RETURN STATEMENT

A Function which invokes other function is known as calling function

and function which is invoked by other function is knows as Called

function.

Calling a Function

While creating a C function, you give a definition of what the function

has to do. To use a function, you will have to call that function to

perform the defined task.

When a program calls a function, the program control is transferred to

the called function. A called function performs a defined task and when

its return statement is executed or when its function-ending closing

brace is reached, it returns the program control back to the main

program.

To call a function, you simply need to pass the required parameters

along with the function name, and if the function returns a value, then

you can store the returned value. For example –

#include <stdio.h>

#include <conio.h>

/* function declaration */

int max(int num1, int num2);

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 /* calling a function to get max value */

 ret = max(a, b);

 printf("Max value is : %d\n", ret);

 return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;
}

OUTPUT : Max value is : 200

Difference between Function Definition and Declaration

 Function Definition

 There is no semicolon at the end of the closing paranthesis

of the parameter-list.

 The body of the function follows it.

 Mandatory for all functions.

 Function declaration

 There is a semicolon at the end of the closing paranthesis

of parameter list.

 The body of the function does not follow it.

 Optional for function returning int value.

Types of Functions

 Based on the nature of the creation, the functions are divides as

 1. User-defined functions and

 2. Built-in functions

Built-in functions are predefined and supplied along with the compiler

and these can be used in any C program. They are also known as Library

Functions.

Function Definition

 A function definition describes what a function does, how its

actions are achieved and how it is used. It consists of a function

header and function statements.

SYNTAX :

 Function type function Name (Parameters List)

 {

 Local variable declaration;

 Executable statement;

 Executable Statement;

 ……

 Return Statement

 }

The advantages of using functions are:

 Avoid repetition of codes.

 Increases program readability.

 Divide a complex problem into simpler ones.

 Reduces chances of error.

 Modifying a program becomes easier by using function.

There are very few disadvantages to using functions in C.

 Complexity of the program increases.

 Execution speed decreases.

 It requires a programmer must be expert in programming.

Category of Functions :

 Category 1 : Functions with no arguments and no return values.

 Category 2 : Functions with arguments and no return values.

 Category 3 : Functions with arguments and one return value.

 Category 4 : Functions with no arguments but return a value.

 Category 5 : Functions that return multiple values.

CATOGORY 1 :

SAMPLE PROGRAM :

/* FACTORIAL NUMBER USING FUNCTON*/

 #include<stdio.h>

 #include<conio.h>

 void main ()

 {

 int f, n, i=1;

 printf (“Enter the Number”);

 scanf (“%d”,&n);

 fun ();

 }

void fun ()

{

 int f=1, i;

 for (i=1; i <= n; i++)

 {

 f = f * i;

 }

 printf (“ The factorial number is “, f);

}

CATOGORY 2 :

/* BIGGEST VALUE OF THREE NUMBERS USING FUNCTION */

 # include <stdio.h>

include<conio.h>

void main ()

{

 int a, b, c;

 void big(int, int, int);

 printf (“Enter three numbers”);

 scanf (“%d %d %d “, &a, &b, &c);

 big (a, b, c);

}

void big (int x, int y, int z)

{

 int (x > y && x > z)

 printf (“ A is Biggest “);

 else if (y > z && y > c)

 printf (“B is Biggest”);

 else

 printf (“C is biggest”);

 }

CATOGORY 3 :

/* AREA OF A TRIANGLE USING FUNCTION */

 # include <stdio.h>

include<conio.h>

void main ()

{

 float x, y, c, area() ;

 printf (“Enter Base and Height”);

 scanf (“%f %f “, &x, &y);

 c = area (x , y);

 printf (“The area is %f”, c);

}

float area (float b, float h)

{

 return (0.5 * b * h);

}

