
STRUCTURE :

A structure creates a data type that can be used to group items of

possibly different types into a single type. Structure can have

elements of different types.

How to create a structure?

„struct‟ keyword is used to create a structure.

SYNTAX OF STRUCTURE :

struct tag_name

{

 datatype member1;

 datatype memeber2;

 .

 .

};

 The structure tag is optional and each member definition is a

normal variable definition,such as int i, or float f, or any other valid

variable definition.At the end of the structure‟s definition, before

the final semicolon, one or more structure variables can be created.

struct student

{

 char name [20];

 int regno;

 int mark1;

 int mark2;

 int mark3;

};

struct student m1,m2,m3;

HOW TO ACCESS THE STRUCTURE MEMEBERS ?

 The member access operator (.) is used to access any member of

a structure. The member access operator is coded as a period

between the structure variable name and the structure member.

/*program using structures*/

#include<stdio.h>

#include<conio.h>

struct student

{

 int eng;

 int tam;

 int major;

};

void main()

{

 struct student s[3];

 int i,total=0;

 clrscr();

for(i=0;i<=2;i++)

{

 printf(" enter marks for 3 students\n ");

 printf("enter eng marks \n");

 scanf("%d", &s[i].eng);

 printf("enter tam marks \n");

 scanf("%d", &s[i].tam);

 printf("enter major marks \n");

 scanf("%d", &s[i].major);

 total=s[i].eng+s[i].tam+s[i].major;

 printf("total marks to s[%d] student=%d", i, total);

 getch();

}

}

Output :

Enter marks for 3 students

Enter eng mark

56

Enter tam mark

67

Enter major mark

78

total marks to s[0] student=201

Enter marks for 3 students

Enter eng mark

78

Enter tam mark

98

Enter major mark

90

Total marks to s[1]=266

Enter marks for 3 students

Enter eng mark

98

Enter tam mark

87

Enter major mark

67

Total marks to s[2]=252

COPYING AND COMPARING STRUCTURE VARIABLES :

The variables of the same structure type can be copied the same way

as ordinary variables.

 Program Example :

#include<stdio.h>

#include<conio.h>

 struct class

 {

 int no;

 char name[20];

 float marks;

 }

 void main ()

 {

 int x;

 struct class s1 = {100,”Nithya”,70};

 struct class s2 = {200,”Ramya”,90};

 s3 = s2;

 x = ((s3.no == s2.no) && (s3.marks == s2.marks)) ? 1 : 0;

 if (x==1)

 {

 printf (“Student 2 and Student3 are same”);

 printf (“%d %s %f”, s3.no,s3.name,s3.marks);

}

 else

 printf (“Student2 and student3 are different”);

}

Output :

 Student 2 and student3 are same

 200 Ramya 90

ARRAYS OF STRUCTURES :

 An array of structures is stored inside the memory in the same

way as a multi-dimensional array.

Program Example :

 #include<stdio.h>

 #include<conio.h>

struct marks

{

 int sub1;

 int sub2;

 int sub3;

 int total;

};

void main ()

{

 int i;

 struct marks student [3] =

 { {45,67,81,0},{75,53,69,0},{57,36,71,0};

 struct marks total;

 for (i=0; i<= 2; i++)

 {

 student[i].total = student[i].sub1 +

 student[i].sub2+student[i].sub3;

 total.sub1 = total.sub1 + student[i].sub1;

 total.sub2 = total.sub2 + student[i].sub2;

 total.sub3 = total.sub3 + student[i].sub3;

total.total = total.total + student[i].total;

}

 printf (“STUDENT TOTAL\n\n”);

for (i=0; i<=2; i++)

 printf(“Student[%d] %d”, i+1,student[i].total);

 printf (“\n SUBJECT TOTAL\n\n”);

 printf (“%s %d\n%s %d\n%s %d\n”),

 “Subject 1 “, total.sub1, “Subject 2 “,total.sub2, “Subject 3 “,

total.sub3);

 printf (“\n Grand Total = %d\n, total .total);

}

Output :

 STUDENT TOTAL

 Student [1] 193

 Student [2] 197

 Student [3] 164

 SUBJECT TOTAL

 Subject1 177

 Subject2 156

 Subject3 221

Grand Total = 554

STRUCTURES AND FUNCTIONS :

 A structure can be passed to any function from main function or

from any sub function.

 Structure definition will be available within the function only.

 It won‟t be available to other functions unless it is passed to those

functions by value or by address.

The general format of sending a copy of a structure to the called

function is :

 function_name(structure_variable_name);

The called function takes the following form :

 datatype functionname (struct_type st_name)

 {

 return (expression);

 }

Program Example :

 struct student

{

 char name[50];

 int age;

};

void display(struct student s);

void main ()

{

 struct student s1;

 printf (“Enter the Name”);

 scanf (“%s”, s1.name);

 printf (“Enter Age”);

 scanf (“%d”, s1.age);

 display (s1);

}

void display (struct student s)

 {

 printf (“Displaying information”);

 printf (“Name %s”, s.name);

 printf (“Age %d”, s.age);

}

 Union

Union is a user-defined data type, just like a structure. Union combines

objects of different types and sizes together. The union variable allocates the

memory space equal to the space to hold the largest variable of union. It

allows varying types of objects to share the same location.

Syntax of Declaring Union

union [name of union]

 {

 type member1;

 type member2;

 type member3;

 };

Union is declared using the "union" keyword and name of union. Number 1,

number 2, number 3 are individual members of union. The body part is

terminated with a semicolon (;).

Example of Union in C Programming

#include <stdio.h>

union item

{

 int x;

 float y;

 char ch;

};

int main()

{

 union item it;

 it.x = 12;

 it.y = 20.2;

 it.ch = 'a';

 printf("%d\n", it.x);

 printf("%f\n", it.y);

 printf("%c\n", it.ch);

 return 0;

}

Output:

1101109601

20.199892

a

DIFFERENCE BETWEEN STRUCTURE AND UNION

Structure Union

Struct keyword to define a structure. Union keyword to define a union.

Every member within structure is assigned a

unique memory location.

In union, a memory location is shared by all the

data members.

Changing the value of one data member will not

affect other data members in structure.

Changing the value of one data member will change

the value of other data members in union.

It enables to initialize several members at once. It enables to initialize only the first member of

union.

The total size of the structure is the sum of the size

of every data member.

The total size of the union is the size of the largest

data member.

It is mainly used for storing various data types. It is mainly used for storing one of the many data

types that are available.

It occupies space for each and every member

written in inner parameters.

It occupies space for a member having the highest

size written in inner parameters.

BIT FIELD

A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length.

A word can therefore be divided into a number of bit fields.

Bit Field Declaration

struct {

 datatype name1 : bit-length;

 datatype name2 : bit-length;

 datatype name N : bit-length;

};

Program Example :

#include <stdio.h>

#include <string.h>

struct {

 unsigned int age : 3;

} Age;

int main() {

 Age.age = 4;

 printf("Sizeof(Age) : %d\n", sizeof(Age));

 printf("Age.age : %d\n", Age.age);

 Age.age = 7;

 printf("Age.age : %d\n", Age.age);

 Age.age = 8;

It supports flexible array. It does not support a flexible array.

 printf("Age.age : %d\n", Age.age);

 return 0;

}

Output :

Sizeof(Age) : 4

Age.age : 4

Age.age : 7

Age.age : 0

Text Book :

E.Balaguruswamy, Programming in ANSI C- 4e.

References :

 www.guru99.com

 www.tutotialspoint.com

http://www.guru99.com/
http://www.tutotialspoint.com/

