
UNIT - II

Tree - Terminology

 In linear data structure data is organized in sequential order and in non-

linear data structure data is organized in random order. A tree is a very popular

non-linear data structure used in a wide range of applications. A tree data

structure can be defined as follows...

Tree is a non-linear data structure which organizes data in hierarchical

structure and this is a recursive definition.

A tree data structure can also be defined as follows...

Tree data structure is a collection of data (Node) which is organized in

hierarchical structure recursively

In tree data structure, every individual element is called as Node. Node in a tree

data structure stores the actual data of that particular element and link to next

element in hierarchical structure.

In a tree data structure, if we have N number of nodes then we can have a

maximum of N-1 number of links.

Definition

A tree is finite set of one or more nodes such that

(i) There is a specially designated node called the root

(ii) The remaining nodes are partitioned inti n ≥ 0 disjoint sets T1,....Tn where

each of these sets is a tree. T1,....Tn are called the subtrees of the tree.

Example

Terminology

In a tree data structure, we use the following terminology...

1. Root

 In a tree data structure, the first node is called as Root Node. Every tree

must have a root node. We can say that the root node is the origin of the tree

data structure. In any tree, there must be only one root node. We never have

multiple root nodes in a tree.

2. Edge

 In a tree data structure, the connecting link between any two nodes is

called as EDGE. In a tree with 'N' number of nodes there will be a maximum of

'N-1' number of edges.

3. Parent

 In a tree data structure, the node which is a predecessor of any node is

called as PARENT NODE. In simple words, the node which has a branch from

it to any other node is called a parent node. Parent node can also be defined as

"The node which has child / children".

4. Child

 In a tree data structure, the node which is descendant of any node is

called as CHILD Node. In simple words, the node which has a link from its

parent node is called as child node. In a tree, any parent node can have any

number of child nodes. In a tree, all the nodes except root are child nodes.

5. Siblings

 In a tree data structure, nodes which belong to same Parent are called

as SIBLINGS. In simple words, the nodes with the same parent are called

Sibling nodes.

6. Leaf

 In a tree data structure, the node which does not have a child is called

as LEAF Node. In simple words, a leaf is a node with no child.

In a tree data structure, the leaf nodes are also called as External Nodes.

External node is also a node with no child. In a tree, leaf node is also called as

'Terminal' node.

7. Internal Nodes

 In a tree data structure, the node which has atleast one child is called

as INTERNAL Node. In simple words, an internal node is a node with atleast

one child.

 In a tree data structure, nodes other than leaf nodes are called as Internal

Nodes. The root node is also said to be Internal Node if the tree has more

than one node. Internal nodes are also called as 'Non-Terminal' nodes.

8. Degree

In a tree data structure, the total number of children of a node is called

as DEGREE of that Node. In simple words, the Degree of a node is total

number of children it has. The highest degree of a node among all the nodes in a

tree is called as 'Degree of Tree'

9. Level

 In a tree data structure, the root node is said to be at Level 0 and the

children of root node are at Level 1 and the children of the nodes which are at

Level 1 will be at Level 2 and so on... In simple words, in a tree each step from

top to bottom is called as a Level and the Level count starts with '0' and

incremented by one at each level (Step).

10. Height

 In a tree data structure, the total number of edges from leaf node to a

particular node in the longest path is called as HEIGHT of that Node. In a tree,

height of the root node is said to be height of the tree. In a tree, height of all

leaf nodes is '0'.

11. Depth

 In a tree data structure, the total number of egdes from root node to a

particular node is called as DEPTH of that Node. In a tree, the total number of

edges from root node to a leaf node in the longest path is said to be Depth of

the tree. In simple words, the highest depth of any leaf node in a tree is said to

be depth of that tree. In a tree, depth of the root node is '0'.

12. Path

 In a tree data structure, the sequence of Nodes and Edges from one node

to another node is called as PATH between that two Nodes. Length of a

Path is total number of nodes in that path. In below example the path A - B - E

- J has length 4.

13. Sub Tree

 In a tree data structure, each child from a node forms a subtree

recursively. Every child node will form a subtree on its parent node.

Tree Representations

 A tree data structure can be represented in two methods. Those methods

are as follows...

1. List Representation

2. Left Child - Right Sibling Representation

Consider the following tree...

1. List Representation

 In this representation, we use two types of nodes one for representing the

node with data called 'data node' and another for representing only references

called 'reference node'. We start with a 'data node' from the root node in the tree.

Then it is linked to an internal node through a 'reference node' which is further

linked to any other node directly. This process repeats for all the nodes in the

tree.

The above example tree can be represented using List representation as

follows...

2. Left Child - Right Sibling Representation

 In this representation, we use a list with one type of node which consists

of three fields namely Data field, Left child reference field and Right sibling

reference field. Data field stores the actual value of a node, left reference field

stores the address of the left child and right reference field stores the address of

the right sibling node. Graphical representation of that node is as follows...

In this representation, every node's data field stores the actual value of that

node. If that node has left a child, then left reference field stores the address of

that left child node otherwise stores NULL. If that node has the right sibling,

then right reference field stores the address of right sibling node otherwise

stores NULL.

Binary Tree Data structure

 In a normal tree, every node can have any number of children. A binary

tree is a special type of tree data structure in which every node can have

a maximum of 2 children. One is known as a left child and the other is known

as right child.

A tree in which every node can have a maximum of two children is called

Binary Tree.

In a binary tree, every node can have either 0 children or 1 child or 2 children

but not more than 2 children.

Example

There are different types of binary trees and they are...

1. Strictly Binary Tree

 In a binary tree, every node can have a maximum of two children. But in

strictly binary tree, every node should have exactly two children or none. That

means every internal node must have exactly two children. A strictly Binary

Tree can be defined as follows...

A binary tree in which every node has either two or zero number of

children is called Strictly Binary Tree

Strictly binary tree is also called as Full Binary Tree or Proper Binary

Tree or 2-Tree

Strictly binary tree data structure is used to represent mathematical expressions.

Example

2. Complete Binary Tree

 In a binary tree, every node can have a maximum of two children. But in

strictly binary tree, every node should have exactly two children or none and in

complete binary tree all the nodes must have exactly two children and at every

level of complete binary tree there must be 2level number of nodes. For example

at level 2 there must be 22 = 4 nodes and at level 3 there must be 23 = 8 nodes.

A binary tree in which every internal node has exactly two children and all

leaf nodes are at same level is called Complete Binary Tree.

Complete binary tree is also called as Perfect Binary Tree

3. Extended Binary Tree

 A binary tree can be converted into Full Binary tree by adding dummy

nodes to existing nodes wherever required.

The full binary tree obtained by adding dummy nodes to a binary tree is

called as Extended Binary Tree.

In above figure, a normal binary tree is converted into full binary tree by adding

dummy nodes (In pink colour).

Binary Tree Representations

A binary tree data structure is represented using two methods. Those methods

are as follows...

1. Array Representation

2. Linked List Representation

Consider the following binary tree...

1. Array Representation of Binary Tree

 In array representation of a binary tree, we use one-dimensional array (1-

D Array) to represent a binary tree.

 Consider the above example of a binary tree and it is represented as

follows...

 To represent a binary tree of depth 'n' using array representation, we need

one dimensional array with a maximum size of 2n + 1.

2. Linked List Representation of Binary Tree

 We use a double linked list to represent a binary tree. In a double linked

list, every node consists of three fields. First field for storing left child address,

second for storing actual data and third for storing right child address.

In this linked list representation, a node has the following structure...

 The above example of the binary tree represented using Linked list

representation is shown as follows...

Binary Tree Traversal

 Traversal is a process to visit all the nodes of a tree and may print their

values too. Because, all nodes are connected via edges (links) we always start

from the root (head) node. That is, we cannot randomly access a node in a tree.

There are three ways which we use to traverse a tree −

• In-order Traversal

• Pre-order Traversal

• Post-order Traversal

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and
later the right sub-tree. We should always remember that every node may
represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key
values in an ascending order.

We start from A, and following in-order traversal, we move to its left
subtree B. B is also traversed in-order. The process goes on until all the
nodes are visited. The output of inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Procedure INORDER (T)

If T≠ 0 then

[call INORDER (LCHILD(T))

 print(DATA(T))

 call (INORDER(RCHILD(T))]

end INORDER

In-Order (Binary only)

To visit a node:

• Recursively visit left child.

• Perform an action
• Recursively visit right child.

Pre-order Traversal

 In this traversal method, the root node is visited first, then the left subtree

and finally the right subtree.

 We start from A, and following pre-order traversal, we first visit A itself

and then move to its left subtree B. B is also traversed pre-order. The process goes

on until all the nodes are visited. The output of pre-order traversal of this tree will

be −

A → B → D → E → C → F → G

Algorithm

Procedure PREORDER (T)

If T≠ 0 then

[print(DATA(T))

 call PREORDER (LCHILD(T))

 call (PREORDER (RCHILD(T))]

end PREORDER

Post-order Traversal

 In this traversal method, the root node is visited last, hence the name. First

we traverse the left subtree, then the right subtree and finally the root node.

We start from A, and following Post-order traversal, we first visit the left

subtree B. B is also traversed post-order. The process goes on until all the nodes

are visited. The output of post-order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm

Procedure POSTORDER (T)

If T≠ 0 then

[call POSTORDER(LCHILD(T))

 call POSTORDER (RCHILD(T))]

 print(DATA(T))

end POSTORDER

Pre-Order

To visit a node:

• Perform an action (like
Print)

• Recursively visit children
in order.

Example on the above tree:

Print "A"

Print "B"

Print "D"

Print "E"

Print "C"

Print "F"

Print "G"

Post-Order

To visit a node:

• Recursively visit children
in order.

• Perform an action

Example on the above tree:

Print "D"

Print "E"

Print "B"

Print "F"

Print "G"

Print "C"

Print "A"

In-Order (Binary

only)

To visit a node:

• Recursively visit left
child.

• Perform an action
• Recursively visit right

child.

Example on the above tree:

Print "D"

Print "B"

Print "E"

Print "A"

Print "F"

Print "C"

Print "G"

Threaded Binary Tree

 A binary tree can be represented using array representation or linked list

representation. When a binary tree is represented using linked list representation, the

reference part of the node which doesn't have a child is filled with a NULL pointer. In any

binary tree linked list representation, there is a number of NULL pointers than actual

pointers. Generally, in any binary tree linked list representation, if there are 2N number of

reference fields, then N+1 number of reference fields are filled with NULL (N+1 are NULL

out of 2N). This NULL pointer does not play any role except indicating that there is no link

(no child).

 A. J. Perlis and C. Thornton have proposed new binary tree called "Threaded Binary

Tree", which makes use of NULL pointers to improve its traversal process. In a threaded

binary tree, NULL pointers are replaced by references of other nodes in the tree. These extra

references are called as threads.

Threaded Binary Tree is also a binary tree in which all left child pointers that are

NULL (in Linked list representation) points to its in-order predecessor, and all right

child pointers that are NULL (in Linked list representation) points to its in-order

successor.

If there is no in-order predecessor or in-order successor, then it points to the root node.

Consider the following binary tree...

To convert the above example binary tree into a threaded binary tree, first find the in-order

traversal of that tree...

In-order traversal of above binary tree...

H - D - I - B - E - A - F - J - C - G

 When we represent the above binary tree using linked list representation, nodes H, I,

E, F, J and G left child pointers are NULL. This NULL is replaced by address of its in-order

predecessor respectively (I to D, E to B, F to A, J to F and G to C), but here the node H does

not have its in-order predecessor, so it points to the root node A. And nodes H, I, E,

J and G right child pointers are NULL. These NULL pointers are replaced by address of its

in-order successor respectively (H to D, I to B, E to A, and J to C), but here the node G does

not have its in-order successor, so it points to the root node A.

Above example binary tree is converted into threaded binary tree as follows.

In the above figure, threads are indicated with dotted links.

