Arrays

An Array consists of Collection of elements in
same data type.

*Elements are stored in consecutive memory
locations.

*An array is a set of pairs, index and value. For
each index which is defined, there is a value
associated with that index.

Array size=5

i W

CArrays

Array

Structure ARRAY(value, index)

Declare CREATE()->array
RETRIEVE(array,index)->value
STORE(array,index,value)->array;

for all Ag array, i,j € index,, x € value let

RETRIVE(CREATE,i)::=error
RETRIVE(STORE(A,i,x),j)::=

If EQUAL(i,j) then x else RETRIVE(A,)J)
End

End ARRAY

 The function CREATE()
— It produces a new empty array.

 RETRIVE(array,index)->value

— |t takes input an array and an index, and either returns the
appropriate value or an error.

A
0 1 2 3 4
 STORE(array,index,value)->array
— It is used to enter new index pairs.

ORDERED LISTS

* Collection of elements are arranged in
sequential order.

 Example
— Days of the week

— Values in a card deck
— (al,a2,a3....,an)

Operations

~ind the length of the list, n.
Read the list from left to right.
Retrieve the i-th element from the list.

Store a new value into the i-th positon
Insert a new element at position i.
Delete the element at position i.

LIST ADT

A sequence of zero or more elements
A, A, A, Ay

N: length of the list

A,: first element

Ay: last element

A;: position |

If N=0, then empty list

Linearly ordered

— A precedes A,
— A follows A,

Operations

printList: print the list
makeEmpty: create an empty list

find: locate the position of an object in a list

— list: 34,12, 52, 16, 12

— find(52) — 3

insert: insert an object to a list

— insert(x,3) — 34, 12,52, x, 16, 12

remove: delete an element from the list

— remove(52) —> 34, 12, x, 16, 12

findKth: retrieve the element at a certain position

Implementation of ADT

* Choose a data structure to represent the ADT
— E.g. arrays, records, etc.

* Each operation associated with the ADT is
implemented by one or more subroutines

* Two standard implementations for the list ADT
— Array-based
— Linked list

Array Implementation

Requires an estimate of the maximum size of the list
» waste space
printList and find: linear
findKth: constant
insert and delete: slow
— e.g. insert at position 0 (making a new element)

* requires first pushing the entire array down one
spot to make room

— e.g. delete at position 0
* requires shifting all the elements in the list up one

— On average, half of the lists needs to be moved for
either operation

Pointer implementation(Linked List)

* Ensure that the list is not stored contiguously
— use a linked list

— a series of structures that are not necessarily adjacent in
memory

A 1 - A2 — A3 A4

As T

Y
Y

Figure 3.1 A linked list

= Each node contains the element and a pointer to a structure

containing its successor
sthe last cell’s next link points to NULL

= Compared to the array implementation,

v'the pointer implementation uses only as much space as is needed for the
elements currently on the list

[Ibut requires space for the pointers in each cell

Linked List

g ool

A linked list is a series of connected nodes

Each node contains at least
— A piece of data (any type)
— Pointer to the next node in the list

Head: pointer to the first node
The last node points to NULL

node

data pointer

A Simple Linked List Class

e \We use two classes: and

e Declare Node class for the nodes

— data: double-type data in this example
— next: a pointer to the next node in the list

class Node {
public:
double data; // data
Node* next; // pointer to next

A Simple Linked List Class

* Declare List, which contains
— head: a pointer to the first node in the list.
Since the list is empty initially, head is set to NULL
— Operationson List

class List {

public:
List (void) { head = NULL; } // constructor
~List (void) ; // destructor
bool IsEmpty() { return head == NULL; }

Node* InsertNode (int index, double x);
int FindNode (double x);
int DeleteNode (double x);
void DisplayList(void);
private:
Node* head;

s

Operations of List

— IsEmpty: determine whether or not the list is
empty

— InsertNode: insert a new node at a particular
position

— FindNode: find a node with a given value

— DeleteNode: delete a node with a given value

— DisplayList: print all the nodes in the list

Inserting a new node

* Node* InsertNode (1nt i1ndex, double x)

— Insert a node with data equal to x after the index’th elements. (i.e.,
when index = 0, insert the node as the first element;

when index = 1, insert the node after the first element, and so on)
— If the insertion is successful, return the inserted node.
Otherwise, return NULL.

(If index is <0 or > length of the list, the insertion will fail.)

» Steps
. , index’ th
1. Locate index’th element element
2. Allocate memory for the new node q)(>
3. Point the new node to its successor
4. Point the new node’s predecessor to the new node

newNode

Inserting a new node

 Possible cases of InsertNode
1. Insert into an empty list
2. Insertin front
3. Insert at back
4. Insertin middle

* But, in fact, only need to handle two cases

— Insert as the first node (Case 1 and Case 2)

— Insert in the middle or at the end of the list (Case 3 and
Case 4)

Inserting a new node

List: :InsertNode (int index, double x) { Try to locate index'th
if (index < 0) return NULL; node. If it doesn’t exist,
return NULL.
int currIndex = 1;
Node* currNode = head;
while (currNode && index > currIndex) {
currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = Xy newNode
if (index == 0) {
newNode->next = head; Curr Node
head = newNode;
} B |
else {
newNode->next = currNode->next;
currNode->next = newNode;
} newNode

return newNode;

Inserting a new node

Example: InsertNode(int 1,double 10)
HEAD | ———> 10 J(30 |[NULL
0 T 1 2
CURR NODE
Node* newNode = new Node

newNode—->data

20;

20

* newNode->next =

currNode—->next;

HEAD | ——> 10 30 |NULL
;] :
CURR NODE
20| |
* currNode—->next = newNode;

HEAD 10 - 20 NULL

——4 30

Finding a node

* int FindNode (double x)
— Search for a node with the value equal to x in the list.

— If such a node is found, return its position. Otherwise, return O.

int List::FindNode (double x) {

Node* currNode = head;

int currlIndex= 1;

while (currNode && currNode->data != x) {
currNode = currNode->next;
currlndex++;

}

i1f (currNode) return currlndex;
return 0O;

Deleting a node

* int DeleteNode (double x)

— Delete a node with the value equal to x from the list.

— If such a node is found, return its position. Otherwise, return 0.
* Steps

— Find the desirable node (similar to FindNode)

— Release the memory occupied by the found node

— Set the pointer of the predecessor of the found node to the
successor of the found node

* Like InsertNode, there are two special cases

— Delete first node
— Delete the node in middle or at the end of the list

Deleting a node

int List::DeleteNode (double x) {

Try to find the node with its
Node* prevNode = NULL; // value equal to x
Node* currNode = head;
int currIndex = 1;
while (currNode && currNode->data !'= x) {
prevNode = currNode;
currNode = currNode->next;

currIndex++;
}
if (currNode) {
1f (prevNode) {
prevNode->next = currNode->next;
delete currNode;
}
else {
head = currNode->next;
delete currNode;

}

return currlIndex;

}

return 0;

Deleting a node

int List: :DeleteNode (double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data !'= x) {
prevNode = currNode;
currNode = currNode->next;
currIndex++;

prevNode currNode

% _f oF
if (currNode) {
if (prevNode) {

prevNode->next = currNode->next;
delete currNode;

}

else {

head = currNode->next;
delete currNode;

}

return currlIndex;

}

return 0;

Deletion

int List::DeleteNode (double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {
prevNode = currNode;
currNode = currNode->next;

currIndex++;
}
if (currNode) {
1f (prevNode) {
prevNode->next = currNode->next;
delete currNode;
}
else {
head = currNode->next;
delete currNode;

}

return currlIndex;

}

return 0;

} head currNode

"."

Traversal

e.next;

public int countNodes () {

int count = 0;
Element e = head;
while(e !'= null) {
count++;
e = e.next;

}

return count;

}

4

Begin at the first node, then follow each next reference until the
traversal condition is satisfied or until you come to the end.

._@>.\<‘

—...

To move an Element reference e from one node to 1

Lhe next use:

Example: Count the number of nodes in a linked list.

Printing all the elements

* voi1d DisplaylList (void)
— Print the data of all the elements
— Print the number of the nodes

void List::DisplayList()
{

int num = 0;

Node* currNode = head;

while (currNode != NULL) {
cout << currNode->data << endl;
currNode = currNode->next;
num++;

}

cout << "Number of nodes in the list: " << num << endl;

