
Arrays

• An Array consists of Collection of elements in
same data type.

•Elements are stored in consecutive memory
locations.

•An array is a set of pairs, index and value. For
each index which is defined, there is a value
associated with that index.

Array

Structure ARRAY(value, index)

Declare CREATE()->array

RETRIEVE(array,index)->value

STORE(array,index,value)->array;

for all Aε array, i,j ε index,, x ε value let

RETRIVE(CREATE,i)::=error

RETRIVE(STORE(A,i,x),j)::=

If EQUAL(i,j) then x else RETRIVE(A,J)

End

End ARRAY

• The function CREATE()

– It produces a new empty array.

• RETRIVE(array,index)->value

– It takes input an array and an index, and either returns the
appropriate value or an error.

A

0 1 2 3 4

• STORE(array,index,value)->array

– It is used to enter new index pairs.

10 20 30 40 50

ORDERED LISTS

• Collection of elements are arranged in
sequential order.

• Example

– Days of the week

– Values in a card deck

– (a1,a2,a3….,an)

Operations

• Find the length of the list, n.

• Read the list from left to right.

• Retrieve the i-th element from the list.

• Store a new value into the i-th positon

• Insert a new element at position i.

• Delete the element at position i.

LIST ADT

• A sequence of zero or more elements
A1, A2, A3, … AN

• N: length of the list
• A1: first element
• AN: last element
• Ai: position i
• If N=0, then empty list
• Linearly ordered

– Ai precedes Ai+1

– Ai follows Ai-1

Operations

• printList: print the list
• makeEmpty: create an empty list
• find: locate the position of an object in a list

– list: 34,12, 52, 16, 12
– find(52) → 3

• insert: insert an object to a list
– insert(x,3) → 34, 12, 52, x, 16, 12

• remove: delete an element from the list
– remove(52) → 34, 12, x, 16, 12

• findKth: retrieve the element at a certain position

Implementation of ADT

• Choose a data structure to represent the ADT

– E.g. arrays, records, etc.

• Each operation associated with the ADT is
implemented by one or more subroutines

• Two standard implementations for the list ADT

– Array-based

– Linked list

Array Implementation

• Requires an estimate of the maximum size of the list
➢waste space

• printList and find: linear
• findKth: constant
• insert and delete: slow

– e.g. insert at position 0 (making a new element)
• requires first pushing the entire array down one

spot to make room
– e.g. delete at position 0

• requires shifting all the elements in the list up one
– On average, half of the lists needs to be moved for

either operation

Pointer implementation(Linked List)

• Ensure that the list is not stored contiguously
– use a linked list
– a series of structures that are not necessarily adjacent in

memory

▪ Each node contains the element and a pointer to a structure
containing its successor

▪the last cell’s next link points to NULL

▪ Compared to the array implementation,
✓the pointer implementation uses only as much space as is needed for the
elements currently on the list

but requires space for the pointers in each cell

Linked List

• A linked list is a series of connected nodes

• Each node contains at least
– A piece of data (any type)

– Pointer to the next node in the list

• Head: pointer to the first node

• The last node points to NULL
A

data pointer

node

A CB

A Simple Linked List Class

• We use two classes: Node and List

• Declare Node class for the nodes

– data: double-type data in this example

– next: a pointer to the next node in the list

class Node {

public:

double data; // data

Node* next; // pointer to next

};

A Simple Linked List Class

• Declare List, which contains
– head: a pointer to the first node in the list.

Since the list is empty initially, head is set to NULL

– Operations on List

class List {

public:

List(void) { head = NULL; } // constructor

~List(void); // destructor

bool IsEmpty() { return head == NULL; }

Node* InsertNode(int index, double x);

int FindNode(double x);

int DeleteNode(double x);

void DisplayList(void);

private:

Node* head;

};

Operations of List

– IsEmpty: determine whether or not the list is
empty

– InsertNode: insert a new node at a particular
position

– FindNode: find a node with a given value

– DeleteNode: delete a node with a given value

– DisplayList: print all the nodes in the list

Inserting a new node

• Node* InsertNode(int index, double x)

– Insert a node with data equal to x after the index’th elements. (i.e.,

when index = 0, insert the node as the first element;

when index = 1, insert the node after the first element, and so on)

– If the insertion is successful, return the inserted node.

Otherwise, return NULL.
(If index is < 0 or > length of the list, the insertion will fail.)

• Steps
1. Locate index’th element

2. Allocate memory for the new node

3. Point the new node to its successor

4. Point the new node’s predecessor to the new node
newNode

index’th

element

Inserting a new node

• Possible cases of InsertNode
1. Insert into an empty list

2. Insert in front

3. Insert at back

4. Insert in middle

• But, in fact, only need to handle two cases
– Insert as the first node (Case 1 and Case 2)

– Insert in the middle or at the end of the list (Case 3 and
Case 4)

Inserting a new node
Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode = new Node;

newNode->data = x;

if (index == 0) {

newNode->next = head; Curr Node

head = newNode;

}

else {

newNode->next = currNode->next;

currNode->next = newNode;

}

return newNode;

}

Try to locate index’th
node. If it doesn’t exist,
return NULL.

NULL10

newNode

newNode

Inserting a new node

Example: InsertNode(int 1,double 10)

0 1 2

CURR NODE

Node* newNode = new Node

newNode->data = 20;

NULL10 30HEAD

20

• newNode->next = currNode->next;

0 1 2

• currNode->next = newNode;

NULL10 30HEAD

CURR NODE

20

NULL10 30HEAD 20

Finding a node

• int FindNode(double x)

– Search for a node with the value equal to x in the list.

– If such a node is found, return its position. Otherwise, return 0.

int List::FindNode(double x) {

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

currNode = currNode->next;

currIndex++;

}

if (currNode) return currIndex;

return 0;

}

Deleting a node

• int DeleteNode(double x)

– Delete a node with the value equal to x from the list.

– If such a node is found, return its position. Otherwise, return 0.

• Steps
– Find the desirable node (similar to FindNode)

– Release the memory occupied by the found node

– Set the pointer of the predecessor of the found node to the
successor of the found node

• Like InsertNode, there are two special cases

– Delete first node

– Delete the node in middle or at the end of the list

Deleting a node
int List::DeleteNode(double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

if (currNode) {

if (prevNode) {

prevNode->next = currNode->next;

delete currNode;

}

else {

head = currNode->next;

delete currNode;

}

return currIndex;

}

return 0;

}

Try to find the node with its
value equal to x

Deleting a node
int List::DeleteNode(double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

if (currNode) {

if (prevNode) {

prevNode->next = currNode->next;

delete currNode;

}

else {

head = currNode->next;

delete currNode;

}

return currIndex;

}

return 0;

}

currNodeprevNode

Deletion
int List::DeleteNode(double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

if (currNode) {

if (prevNode) {

prevNode->next = currNode->next;

delete currNode;

}

else {

head = currNode->next;

delete currNode;

}

return currIndex;

}

return 0;

} currNodehead

Traversal

Begin at the first node, then follow each next reference until the

traversal condition is satisfied or until you come to the end.

To move an Element reference e from one node to the next use:

Example: Count the number of nodes in a linked list.

public int countNodes(){

int count = 0;

Element e = head;

while(e != null){

count++;

e = e.next;

}

return count;

}

e = e.next;

Printing all the elements

• void DisplayList(void)

– Print the data of all the elements

– Print the number of the nodes in the list

void List::DisplayList()

{

int num = 0;

Node* currNode = head;

while (currNode != NULL){

cout << currNode->data << endl;

currNode = currNode->next;

num++;

}

cout << "Number of nodes in the list: " << num << endl;

}

