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The General Method  

 

What is a 'Greedy algorithm'? 

 A greedy algorithm, as the name suggests, always makes the choice that 

seems to be the best at that moment. This means that it makes a locally-

optimal choice in the hope that this choice will lead to a globally-optimal 

solution. 

How do you decide which choice is optimal? 

 Assume that you have an objective function that needs to be optimized 

(either maximized or minimized) at a given point. A Greedy algorithm makes 

greedy choices at each step to ensure that the objective function is optimized. 



The Greedy algorithm has only one shot to compute the optimal solution so 

that it never goes back and reverses the decision. 

 Greedy method is the most important design technique, which makes a 

choice that looks best at that moment. A given ‗n‘inputs are required us to 

obtain a subset that satisfies some constraints that is the feasible solution. A 

greedy method suggests that one can device an algorithm that works in stages 

considering one input at a time. 

Greedy choice property  

 We can make whatever choice seems best at the moment and then solve 

the subproblems that arise later. The choice made by a greedy algorithm may 

depend on choices made so far but not on future choices or all the solutions to 

the subproblem. It iteratively makes one greedy choice after another, reducing 

each given problem into a smaller one. Hence, we can say that Greedy 

algorithm is an algorithmic paradigm based on heuristic that follows local 

optimal choice at each step with the hope of finding global optimal solution. 

Components of Greedy Algorithm 

Greedy algorithms have the following five components − 

• A candidate set − A solution is created from this set. 

• A selection function − Used to choose the best candidate to be added to 

the solution. 

• A feasibility function − Used to determine whether a candidate can be 

used to contribute to the solution. 

• An objective function − Used to assign a value to a solution or a partial 

solution. 

  



• A solution function − Used to indicate whether a complete solution has 

been reached. 

How to Create a Greedy Algorithm? 

 

 

• The function Select selects an input from a[] and removes it. The selected 

input’s value is assigned to x.  

• Feasible is a Boolean- valued function that determines whether x can be 

included into a solution vector.  

• The function Union combines x with the solution and updates the objective 

function. 

 

 

 



Knapsack Problem 

• Given n objects and a knapsack or bag. Object i has a weight wi , Profit pi 

and the knapsack has a capacity W. 

•  If a fraction xi, 0≤ xi≤1, of object i is placed into the knapsack, then a 

profit of pixi is earned. 

• The objective is to obtain a filling of the knapsack that maximizes the 

total profit earned.  

• The problem can be stated as  

 

and 0≤ xi≤1, 1≤ i≤n 

• A feasible solution is any set (x1,.....xn) satisfying 2 and 3 above. An 

optimal solution is a feasible solution for which 1 is maximized. 
 

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)  

for i = 1 to n  

   do x[i] = 0  

weight = 0  

for i = 1 to n  

   if weight + w[i] ≤ W then   

      x[i] = 1  

      weight = weight + w[i]  

   else  

      x[i] = (W - weight) / w[i]  

      weight = W  

      break  

return x 

1 

2

 

3 



• If the provided items are already sorted into a decreasing order of pi/wi. 

The total time including the sort is in O(n logn). 

Example 

 For the given set of items and knapsack capacity = 20kg, find the optimal 

solution for the fractional knapsack problem making use of greedy approach. 

Item Weight Profit 

1 18 25 

2 15 24 

3 10 15 

Solution  

Step- 01 

Compute the profit/ weight ratio for each item. 

Item Weight Profit Ratio (pi /wi)  

1 18 25 1.38 

2 15 24 1.6 

3 10 15 1.5 

Step- 02 

Sort all the items in decreasing order of pi/ wi ratio 

 I2 I3 I1 

 1.6 1.5 1.38 

Step- 03 

Start filling the knapsack by putting the items into it one by one. 

Knapsack 

Capacity 

Items in 

Knapsack 
Cost 

20 0 0 

5 I2 24 



Now, 

• Knapsack weight left to be filled as 5 but item- 3 has a weight of 10. 

• Since in fractional knapsack problem, even the fraction of any item can 

be taken. 

• So, knapsack will contain the following items 

  < I2,(5/10)I3> 

Total cost of the knapsack 

= 24+(5/10)15  

=31.5 units. 

Job Sequencing with Deadlines 

➢ Sequencing jobs on a single processor with deadline constraints is called 

job sequencing with deadlines. 

➢ We are given a set of n jobs. 

• Each job has a defined deadline and a certain profit is associated 

with it. 

• We get profit for a job only when the particular job is completed 

within the deadline.  

• A single processor is available to handle all jobs.  

• The processor takes a unit of time to complete a job.   

➢ The problem is stated as follows: 

 There are n jobs let us say S={1,2,...,n} and each job i has a deadline 

di>=0 and a profit pi>=0. We need one unit of time to process each job and we 

can do at most one job each time. We can earn the profit pi if job i is completed 

by its deadline but only one machine is available for processing. A feasible 

solution is a subset of jobs J, such that each job in the subset is completed by its 



deadline gaining a profit pi. An optimal solution is a feasible solution that 

maximizes total profit. 

Thus, D(i)>0 for 1⩽i⩽n. 

Initially, these jobs are ordered according to profit, i.e. p1⩾p2⩾p3⩾...⩾pn  

Algorithm: Job-Sequencing-With-Deadline (D, J, n, k)  

D(0) := J(0) := 0  

k := 1  

J(1) := 1   // means first job is selected  

for i = 2 … n do  

   r := k  

   while D(J(r)) > D(i) and D(J(r)) ≠ r do  

      r := r – 1  

   if D(J(r)) ≤ D(i) and D(i) > r then  

      for l = k … r + 1 by -1 do  

         J(l + 1) := J(l)  

         J(r + 1) := i  

         k := k + 1  

 

Analysis 

 In this algorithm, we are using two loops, one is within another. Hence, 

the complexity of this algorithm is O(n2). 

 

Example 

 n= 4,  (p1,p2,p3,p4)=(100,10,15,27), (d1,d2,d3,d4)=(2,1,2,1) 

 

Solution  

  

Different feasible solution with the sequencing of jobs and total profit are given 

below:  

Feasible solution  Processing Sequence Value 

1. (1,2)    2,1   110 

2. (1,3)    1,3 or 3,1  115 

3. (1,4)    4,1   127 (optimal solution) 

4. (2,3)    2,3   25 

5. (3,4)    4,3   42 

 

Step - 01 

 



 Sort all the given jobs in decreasing order of the profit 

 

 

Jobs J1 J4 J3 J2 

Deadline 2 1 2 1 

Profit 100 27 15 10 

 

Step - 02 

 

 Value of maximum deadline =2. 

So, draw a Gantt chart with maximum time on Gantt chart =2 units as shown- 

 

          0                         1                          2     

 

   

    Gantt Chart 

Now, 

• We take each job one by one in the order they appear in step-01. 

• We place the job on Gantt chart as far as possible from 0. 

 

Step – 03 

 

• we take job J1 

• since its deadline is 2, so we place it in the first empty cell before 

deadline 2 as 

               0       1            2 

 

 

 J={1} is a feasible solution 

 

 

 

    J1 



Step – 04 

 

• we take job J4 

• since its deadline is 1, so we place it in the first empty cell before 

deadline 1 as 

           0         1                     2  

 

 

• The solution J={1,4} is a feasible solution. 

• Next, Job 3 is considered and discarded as J={1,3,4} is not feasible. 

• Finally, job 2 is considered for inclusion into J. It is discarded as 

J={1,2,4} is not feasible.  

• Hence, we are left with the solution J={1,4} with value 127. This is the 

optimal solution for the given problem instance.  

 

Minimum Cost Spanning Trees 

Spanning Tree   

 A spanning tree is a subset of an undirected Graph that has all the 

vertices connected by minimum number of edges. 

 If all the vertices are connected in a graph, then there exists at least one 

spanning tree. In a graph, there may exist more than one spanning tree. 

Properties 

• A spanning tree does not have any cycle. 

• Any vertex can be reached from any other vertex. 

 

 

 J4   J1 



Example 

 In the following graph, the highlighted edges form a spanning tree. 

 

Minimum Spanning Tree 

 A Minimum Spanning Tree (MST) is a subset of edges of a connected 

weighted undirected graph that connects all the vertices together with the 

minimum possible total edge weight. One graph may have more than one 

spanning tree. If there are n numbers of vertices, the spanning tree should 

have n - 1 number of edges. In this context, if each edge of the graph is 

associated with a weight and there exists more than one spanning tree, we need 

to find the minimum spanning tree of the graph.  

 To derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used.  

 

Prim’s Algorithm 
• Prim’s Algorithm is a famous greedy algorithm. 

• It is used for finding the Minimum Spanning Tree (MST) of a given 

graph. 

• To apply Prim’s algorithm, the given graph must be weighted, connected 

and undirected. 

 

Prim’s Algorithm Implementation 



The implementation of Prim’s Algorithm is explained in the following 

steps- 

Algorithm Prim(E, Cost, n, t) 

{ 

 Let (k,l) be an edge of minimum cost in E; 

 mincost:=cost[k,l]; 

 t[1,1]:=k; t[1,2]:=l; 

 for i:=1 to n do 

  if(cost[i,l]<cost[i,k]) then near[i]:=l; 

  else near[i]:=k; 

 near[k]:=near[l]:=0; 

 for i:=2 to n-1 do 

 { 

  Let J be an index such that near[j] ≠ 0 and  

  cost[j,near[j]] is minimum; 

  t[i,1]:=t[i,2]:=near[j]; 

  mincost:=mincost+cost[j,near[j]]; 

  near[j]:=0; 

  for k:=1 to n do 

   if((near[k] ≠ 0) and (cost[k, near[k]]>cost[k,j])) 

    then near[k]:=j; 

 } 

 return mincost; 

} 

 

Step-01: 

• Randomly choose any vertex. 

• The vertex connecting to the edge having least weight is usually selected. 

 Step-02: 

• Find all the edges that connect the tree to new vertices. 

• Find the least weight edge among those edges and include it in the 

existing tree. 

• If including that edge creates a cycle, then reject that edge and look for 

the next least weight edge. 

 Step-03: 

• Keep repeating step-02 until all the vertices is included and Minimum 

Spanning Tree (MST) is obtained. 

 

 



Prim’s Algorithm Time Complexity- 

Worst case time complexity of Prim’s Algorithm is- 

• O(ElogV) using binary heap 

• O(E + VlogV) using Fibonacci heap 

Example 

 

 

Solution- 

  

The above discussed steps are followed to find the minimum cost spanning tree 

using Prim’s Algorithm- 

  

Step-01: 

  

 

  

 



Step-02: 

  

 

  

Step-03: 

  

 

  

Step-04: 

  

 



  

Step-05: 

  

 

  

Step-06: 

  

 

  

Since all the vertices have been included in the MST, so we stop. 

 Now, Cost of Minimum Spanning Tree 

= Sum of all edge weights 

= 10 + 25 + 22 + 12 + 16 + 14 

= 99 units 

  

 



Kruskal’s Algorithm 

 

• Kruskal’s Algorithm is a famous greedy algorithm. 

• It is used for finding the Minimum Spanning Tree (MST) of a given 

graph. 

• To apply Kruskal’s algorithm, the given graph must be weighted, 

connected and undirected. 

Kruskal’s Algorithm Implementation-  

Algorithm Kruskal(E, cost, n, t) 

{ 

 Construct a heap out of the edge costs using Heapify; 

  for i:= 1  to n do parent[i]:=-1; 

 i:=0; mincost:=0.0; 

 while ((i<n-1)  and (heap not empty))  do 

 { 

  Delete a minimum cost edge (u,v) from a heap 

  and reheapify using Adjust; 

  j:=Find(u); k:=Find(v); 

  if(j ≠ k) then 

  { 

   i:=i+1; 

    t[i,1]:=u; t[i,2]:=v; 

   mincost:= mincost+cost[u,v]; 

   Union(j,k); 

  } 

 } 

 if(i ≠ n-1) then write (“No Spanning tree”); 

 else return mincost; 

} 
 The implementation of Kruskal’s Algorithm is explained in the following 

steps- 

step-01: 

  

• Sort all the edges from low weight to high weight. 

  

Step-02: 

  



• Take the edge with the lowest weight and use it to connect the vertices of 

graph. 

• If adding an edge creates a cycle, then reject that edge and go for the next 

least weight edge. 

  

Step-03: 

  

• Keep adding edges until all the vertices are connected and a Minimum 

Spanning Tree (MST) is obtained. 

  

Kruskal’s Algorithm Time Complexity- 

Worst case time complexity of Kruskal’s Algorithm 

   O(ElogV) or O(ElogE) 

 Example- 

 

Solution- 
 To construct MST using Kruskal’s Algorithm, 

• Simply draw all the vertices on the paper. 

• Connect these vertices using edges with minimum weights such that no 

cycle gets formed. 

 

 

 

 



 Step-01 

 

  

Step-02: 

 

  

Step-03: 

 

  



Step-04: 

 

  

Step-05: 

 

  

Step-06: 

 

  



Step-07: 

 

  

Since all the vertices have been connected / included in the MST, so we stop. 

 Weight of the  MST 

 = Sum of all edge weights 

 = 10 + 25 + 22 + 12 + 16 + 14 

 = 99 units 

Optimal Merge Patterns 

 Merge a set of sorted files of different length into a single sorted file. We 

need to find an optimal solution, where the resultant file will be generated in 

minimum time. 

 If the number of sorted files are given, there are many ways to merge 

them into a single sorted file. This merge can be performed pair wise. Hence, 

this type of merging is called as 2-way merge patterns. 

 As, different pairings require different amounts of time, in this strategy 

we want to determine an optimal way of merging many files together. At each 

step, two shortest sequences are merged. 

 To merge a p-record file and a q-record file requires possibly p + 

q record moves, the obvious choice being, merge the two smallest files 

together at each step. 



 Two-way merge patterns can be represented by binary merge trees. Let 

us consider a set of n sorted files {f1, f2, f3, …, fn}. Initially, each element of 

this is considered as a single node binary tree. To find this optimal solution, the 

following algorithm is used. 

Algorithm: TREE (n)   

for i := 1 to n – 1 do   

   declare new node   

   node.leftchild := least (list)  

   node.rightchild := least (list)  

   node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)   

   insert (list, node);   

return least (list);  

At the end of this algorithm, the weight of the root node represents the optimal 

cost. 

Example 

 Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 

number of elements respectively. 

If merge operations are performed according to the provided sequence, then 

M1 = merge f1 and f2 => 20 + 30 = 50 

M2 = merge M1 and f3 => 50 + 10 = 60 

M3 = merge M2 and f4 => 60 + 5 = 65 

M4 = merge M3 and f5 => 65 + 30 = 95 

Hence, the total number of operations is 

50 + 60 + 65 + 95 = 270 

Now, the question arises is there any better solution? 



Sorting the numbers according to their size in an ascending order, we get the 

following sequence − 

f4, f3, f1, f2, f5 

Hence, merge operations can be performed on this sequence 

M1 = merge f4 and f3 => 5 + 10 = 15 

M2 = merge M1 and f1 => 15 + 20 = 35 

M3 = merge M2 and f2 => 35 + 30 = 65 

M4 = merge M3 and f5 => 65 + 30 = 95 

Therefore, the total number of operations is 

15 + 35 + 65 + 95 = 210 

Obviously, this is better than the previous one. 

In this context, we are now going to solve the problem using this algorithm. 

Initial Set 

 

Step-1 

 

Step-2 

 



Step-3 

 

Step-4 

 

 Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of 

comparisons. 

Huffman Codes 

• Binary trees with minimal weighted external path length is to obtain an 

optimal set of codes for messages M1,......,Mn+1. 

• Each code is a binary string that is used for transmission of the 

corresponding message. 

• At the receiving end the code is decoded using a decode tree. 

• A decode tree is a binary tree in which external nodes represent 

messages. 

• The binary bits code word for a message determine the branching needed 

at each level of the decode tree to reach the correct external node. 



      0   1  

   

    0  1 

    0    1  

  

 

• We interpret a zero as a left branch and a one as a right branch, then the 

decode tree corresponds to codes 000,001,01 and 1 for messages M1, M2, 

M3 and M4 respectively. These codes are called Huffman codes. 

• The cost of decoding a code word is propositional to the number of bits 

in the code. 

• This number is equal to the distance of the corresponding external node 

from the root node. 

• If qi is the relative frequency with which message Mi will be transmitted, 

then the expected decode time is∑1≤i≤n+1qidi where di is the distance of 

the external for message Mi from the root node. 

• The expected decode time is minimized by choosing code words 

resulting in a decode tree with minimal weighted external path   

Optimal Storage on Tapes 

1. Given n programs to be stored on tape, the lengths of these programs are 

i1, i2….in respectively. Suppose the programs are stored in the order of 

i1, i2…in. 2 We have a tape of length L i.e. the storage capacity of the 

tape is L. We are also given n programs where length of each program is i 

is Li. 

M1 M4 

M3 

M2 M1 



2. Let Tj be the time to retrieve program ij. 

3. It is now required to store these programs on the tape in such a way so 

that the mean retrieval time is minimum. MRT is the average tome 

required to retrieve any program stored on this tape. 

4. Assume that the tape is initially positioned at the beginning. 

5. Tj is proportional to the sum of all lengths of programs stored in front of 

the program ij. 

6. The goal is to minimize MRT (Mean Retrieval Time),(1/n) ∑i=0Tj 

I.e., want to minimize ∑j=1∑k=1Ti 

 

Example: 
Input : n = 3 L[] = { 5, 3, 10 } 

Output : Order should be { 3, 5, 10 } with MRT = 29/3 

1. Here, n=3 and (L1, L2, L3) = (5, 10, 3). We can store these 3 programs 

on the tape in any order but we want that order which will minimize the 

MRT. 

n 

n j 



2. Suppose we store the programs in order (L1, L2, L3). 

3. Then MRT is given as (5+(5+10)+(5+10+3))/3=38/3 

4. To retrieve L1 we need 5 units of time. Because a tape is a sequential 

device we will have to first pass through entire L1 even if we want to 

retrieve L2. 

5. Hence, retrieval time (RT) is 5 for program 1 and (5+10) for program 2. 

6. Similarly, if program 3 is also considered then the total RT becomes 5+ 

(5+10) + (5+10+3) where (5+10+3) is the RT for program 3. 

7. Since we want to find the mean retrieval time we add all the RT and then 

divide the sum by n. 

8. The aim over here is to find the minimum MRT. To do this we consider 

all the possible orderings of these 3 programs. Since there 3 programs we 

can have at the most 6(3!) combinations. 

9. Consider the below table: 

Ordering MRT 

L1,L2,L3 5+(5+10)+(5+10+3)/3=38/3 

L1,L3,L2 5+(5+3)+(5+10+3)/3=31/3 

L2,L1,L3 10+(5+10)+(5+10+3)/3=43/3 



Ordering MRT 

L2,L3,L1 10+(3+10)+(5+10+3)/3=41/3 

L3,L1,L2 3+(5+3)+(5+10+3)/3=29/3 

L3,L2,L1 3+(3+10)+(5+10+3)/3=34/3 

 

1. It should be seen that the minimum MRT of (29/3) is obtained in case of 

(L1, L2, L3). Hence the optimal solution is achieved if the programs are 

stored in increasing order of their lengths. 

2. Hence, a greedy approach to solving the problem is continuously select 

programs in increasing order of their lengths. 

3. If L is an array having program length in ascending order. 

4. The time complexity of this algorithm including the time to do sorting 

is O(n2). 

Single Source Shortest Paths 

➢ Graphs can be used to represent the highway structure of a state or 

country with vertices representing cities and edges representing sections 

of highway. 



➢ The edges can then be assigned weights which may be either the distance 

between the two cities connected by the edge or the average time to 

drive along that section of highway 

➢ The length of a path is now defined to be the sum of the weights of the 

edges on that path. 

➢ The starting vertex of the path is referred to as the source, and the last 

vertex the destination. 

➢ We are given a directed graph G=(V,E), a weighting function cost for the 

edges of G, and a source vertex vo. 

➢ The problem is to determine the shortest paths from v0 to all the 

remaining vertices of G. 

➢ The shortest path between v0 and some other node v is an ordering 

among s subset of the edges. Hence this problem fits the ordering 

paradigm. 

➢ To generate the shortest paths in this order, we need to be able to 

determine 

1. The next vertex to which a shortest path must be generated 

2. A shortest path to this vertex. Let S denote the set of vertices  

(including v0) to which the shortest paths have already been 

generated . For  w not is S, let dist[w] be the length of the shortest 

path starting from v0, going through only those vertices that are in 

S, and ending at w. 

Algorithm ShortestPaths(v, cost, dist, n) 

{ 

for i:=1 to n do 

{ 

 S[i]:=false;  

 dist[i]:=cost[v,i]; 



} 

S[v]:=true; 

dist[v]:=0.0; 

for  num:=2 to n do 

{ 

 Choose u from among those vertices not in S such that dist[u] is 

minimum; 

S[u]:=true; 

for  (each w adjacent to u with S[w]=false) do 

 if(dist[w]:=dist[u]+cost[u,w]; 

} 

} 

 

Example 

 Find the shortest distance from source vertex ‘S’ to remaining vertices in the 

following graph- 

  

 

Length Adjacency Matrix 

 S a  b c d e 

S 0 1 5 

A  0 2 2 1  

B   0  2  



C    0 3 1 

D     0 2 

E      0 

 

Also, write the order in which the vertices are visited. 

 Solution- 

 Step-01: 

 The following two sets are created- 

• Unvisited set : {S , a , b , c , d , e} 

• Visited set     : { } 

  

Step-02: 

 The two variables  Π and d are created for each vertex and initialized as- 

• Π[S] = Π[a] = Π[b] = Π[c] = Π[d] = Π[e] = NIL 

• d[S] = 0 

• d[a] = d[b] = d[c] = d[d] = d[e] = ∞ 

 Step-03: 

 Vertex ‘S’ is chosen. 

• This is because shortest path estimate for vertex ‘S’ is least. 

• The outgoing edges of vertex ‘S’ are relaxed. 

 Before Edge Relaxation- 



 

Now, 

• d[S] + 1 = 0 + 1 = 1 < ∞ 

∴ d[a] = 1 and Π[a] = S 

• d[S] + 5 = 0 + 5 = 5 < ∞ 

∴ d[b] = 5 and Π[b] = S 

 After edge relaxation, our shortest path tree is- 

 

  

Now, the sets are updated as- 



• Unvisited set : {a , b , c , d , e} 

• Visited set : {S} 

 Step-04: 

 Vertex ‘a’ is chosen. 

• This is because shortest path estimate for vertex ‘a’ is least. 

• The outgoing edges of vertex ‘a’ are relaxed. 

 Before Edge Relaxation- 

 

Now, 

• d[a] + 2 = 1 + 2 = 3 < ∞ 

∴ d[c] = 3 and Π[c] = a 

• d[a] + 1 = 1 + 1 = 2 < ∞ 

∴ d[d] = 2 and Π[d] = a 

• d[b] + 2 = 1 + 2 = 3 < 5 

∴ d[b] = 3 and Π[b] = a 

  

After edge relaxation, our shortest path tree is- 

  



 

  

Now, the sets are updated as- 

• Unvisited set : {b , c , d , e} 

• Visited set : {S , a} 

  

Step-05: 

 Vertex ‘d’ is chosen. 

• This is because shortest path estimate for vertex ‘d’ is least. 

• The outgoing edges of vertex ‘d’ are relaxed. 

 Before Edge Relaxation- 

  



 Now, 

• d[d] + 2 = 2 + 2 = 4 < ∞ 

∴ d[e] = 4 and Π[e] = d 

 After edge relaxation, our shortest path tree is- 

  

 

  

Now, the sets are updated as- 

• Unvisited set : {b , c , e} 

• Visited set : {S , a , d} 

  

Step-06: 

 Vertex ‘b’ is chosen. 

• This is because shortest path estimate for vertex ‘b’ is least. 

• Vertex ‘c’ may also be chosen since for both the vertices, shortest path 

estimate is least. 



• The outgoing edges of vertex ‘b’ are relaxed. 

  

Before Edge Relaxation- 

  

 

  

Now, 

• d[b] + 2 = 3 + 2 = 5 > 2 

∴ No change 

  

After edge relaxation, our shortest path tree remains the same as in Step-05. 

Now, the sets are updated as- 

• Unvisited set : {c , e} 

• Visited set     : {S , a , d , b} 

 Step-07: 

 Vertex ‘c’ is chosen. 

• This is because shortest path estimate for vertex ‘c’ is least. 

• The outgoing edges of vertex ‘c’ are relaxed. 

  

Before Edge Relaxation- 

  



 

  

Now, 

• d[c] + 1 = 3 + 1 = 4 = 4 

∴ No change 

  

After edge relaxation, our shortest path tree remains the same as in Step-05. 

Now, the sets are updated as- 

• Unvisited set : {e} 

• Visited set : {S , a , d , b , c} 

 Step-08: 

 Vertex ‘e’ is chosen. 

• This is because shortest path estimate for vertex ‘e’ is least. 

• The outgoing edges of vertex ‘e’ are relaxed. 

• There are no outgoing edges for vertex ‘e’. 

• So, our shortest path tree remains the same as in Step-05. 

  

Now, the sets are updated as- 



• Unvisited set : { } 

• Visited set : {S , a , d , b , c , e} 

  

Now, 

• All vertices of the graph are processed. 

• Our final shortest path tree is as shown below. 

• It represents the shortest path from source vertex ‘S’ to all other 

remaining vertices. 

  

 

  

The order in which all the vertices are processed is : 

S , a , d , b , c , e.  

 

 


