
UNIT – V

Greedy Method

Greedy Method: The general method – Optimal Storage on Tapes – Knapsack

Problem – Job Sequencing with deadlines – Optimal Merge Patterns – Minimum

Spanning Trees – Single Source Shortest Paths

The General Method

What is a 'Greedy algorithm'?

 A greedy algorithm, as the name suggests, always makes the choice that

seems to be the best at that moment. This means that it makes a locally-

optimal choice in the hope that this choice will lead to a globally-optimal

solution.

How do you decide which choice is optimal?

 Assume that you have an objective function that needs to be optimized

(either maximized or minimized) at a given point. A Greedy algorithm makes

greedy choices at each step to ensure that the objective function is optimized.

The Greedy algorithm has only one shot to compute the optimal solution so

that it never goes back and reverses the decision.

 Greedy method is the most important design technique, which makes a

choice that looks best at that moment. A given ‗n‘inputs are required us to

obtain a subset that satisfies some constraints that is the feasible solution. A

greedy method suggests that one can device an algorithm that works in stages

considering one input at a time.

Greedy choice property

 We can make whatever choice seems best at the moment and then solve

the subproblems that arise later. The choice made by a greedy algorithm may

depend on choices made so far but not on future choices or all the solutions to

the subproblem. It iteratively makes one greedy choice after another, reducing

each given problem into a smaller one. Hence, we can say that Greedy

algorithm is an algorithmic paradigm based on heuristic that follows local

optimal choice at each step with the hope of finding global optimal solution.

Components of Greedy Algorithm

Greedy algorithms have the following five components −

• A candidate set − A solution is created from this set.

• A selection function − Used to choose the best candidate to be added to

the solution.

• A feasibility function − Used to determine whether a candidate can be

used to contribute to the solution.

• An objective function − Used to assign a value to a solution or a partial

solution.

• A solution function − Used to indicate whether a complete solution has

been reached.

How to Create a Greedy Algorithm?

• The function Select selects an input from a[] and removes it. The selected

input’s value is assigned to x.

• Feasible is a Boolean- valued function that determines whether x can be

included into a solution vector.

• The function Union combines x with the solution and updates the objective

function.

Knapsack Problem

• Given n objects and a knapsack or bag. Object i has a weight wi , Profit pi

and the knapsack has a capacity W.

• If a fraction xi, 0≤ xi≤1, of object i is placed into the knapsack, then a

profit of pixi is earned.

• The objective is to obtain a filling of the knapsack that maximizes the

total profit earned.

• The problem can be stated as

and 0≤ xi≤1, 1≤ i≤n

• A feasible solution is any set (x1,.....xn) satisfying 2 and 3 above. An

optimal solution is a feasible solution for which 1 is maximized.

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)

for i = 1 to n

 do x[i] = 0

weight = 0

for i = 1 to n

 if weight + w[i] ≤ W then

 x[i] = 1

 weight = weight + w[i]

 else

 x[i] = (W - weight) / w[i]

 weight = W

 break

return x

1

2

3

• If the provided items are already sorted into a decreasing order of pi/wi.

The total time including the sort is in O(n logn).

Example

 For the given set of items and knapsack capacity = 20kg, find the optimal

solution for the fractional knapsack problem making use of greedy approach.

Item Weight Profit

1 18 25

2 15 24

3 10 15

Solution

Step- 01

Compute the profit/ weight ratio for each item.

Item Weight Profit Ratio (pi /wi)

1 18 25 1.38

2 15 24 1.6

3 10 15 1.5

Step- 02

Sort all the items in decreasing order of pi/ wi ratio

 I2 I3 I1

 1.6 1.5 1.38

Step- 03

Start filling the knapsack by putting the items into it one by one.

Knapsack

Capacity

Items in

Knapsack
Cost

20 0 0

5 I2 24

Now,

• Knapsack weight left to be filled as 5 but item- 3 has a weight of 10.

• Since in fractional knapsack problem, even the fraction of any item can

be taken.

• So, knapsack will contain the following items

 < I2,(5/10)I3>

Total cost of the knapsack

= 24+(5/10)15

=31.5 units.

Job Sequencing with Deadlines

➢ Sequencing jobs on a single processor with deadline constraints is called

job sequencing with deadlines.

➢ We are given a set of n jobs.

• Each job has a defined deadline and a certain profit is associated

with it.

• We get profit for a job only when the particular job is completed

within the deadline.

• A single processor is available to handle all jobs.

• The processor takes a unit of time to complete a job.

➢ The problem is stated as follows:

 There are n jobs let us say S={1,2,...,n} and each job i has a deadline

di>=0 and a profit pi>=0. We need one unit of time to process each job and we

can do at most one job each time. We can earn the profit pi if job i is completed

by its deadline but only one machine is available for processing. A feasible

solution is a subset of jobs J, such that each job in the subset is completed by its

deadline gaining a profit pi. An optimal solution is a feasible solution that

maximizes total profit.

Thus, D(i)>0 for 1⩽i⩽n.

Initially, these jobs are ordered according to profit, i.e. p1⩾p2⩾p3⩾...⩾pn

Algorithm: Job-Sequencing-With-Deadline (D, J, n, k)

D(0) := J(0) := 0

k := 1

J(1) := 1 // means first job is selected

for i = 2 … n do

 r := k

 while D(J(r)) > D(i) and D(J(r)) ≠ r do

 r := r – 1

 if D(J(r)) ≤ D(i) and D(i) > r then

 for l = k … r + 1 by -1 do

 J(l + 1) := J(l)

 J(r + 1) := i

 k := k + 1

Analysis

 In this algorithm, we are using two loops, one is within another. Hence,

the complexity of this algorithm is O(n2).

Example

 n= 4, (p1,p2,p3,p4)=(100,10,15,27), (d1,d2,d3,d4)=(2,1,2,1)

Solution

Different feasible solution with the sequencing of jobs and total profit are given

below:

Feasible solution Processing Sequence Value

1. (1,2) 2,1 110

2. (1,3) 1,3 or 3,1 115

3. (1,4) 4,1 127 (optimal solution)

4. (2,3) 2,3 25

5. (3,4) 4,3 42

Step - 01

 Sort all the given jobs in decreasing order of the profit

Jobs J1 J4 J3 J2

Deadline 2 1 2 1

Profit 100 27 15 10

Step - 02

 Value of maximum deadline =2.

So, draw a Gantt chart with maximum time on Gantt chart =2 units as shown-

 0 1 2

 Gantt Chart

Now,

• We take each job one by one in the order they appear in step-01.

• We place the job on Gantt chart as far as possible from 0.

Step – 03

• we take job J1

• since its deadline is 2, so we place it in the first empty cell before

deadline 2 as

 0 1 2

 J={1} is a feasible solution

 J1

Step – 04

• we take job J4

• since its deadline is 1, so we place it in the first empty cell before

deadline 1 as

 0 1 2

• The solution J={1,4} is a feasible solution.

• Next, Job 3 is considered and discarded as J={1,3,4} is not feasible.

• Finally, job 2 is considered for inclusion into J. It is discarded as

J={1,2,4} is not feasible.

• Hence, we are left with the solution J={1,4} with value 127. This is the

optimal solution for the given problem instance.

Minimum Cost Spanning Trees

Spanning Tree

 A spanning tree is a subset of an undirected Graph that has all the

vertices connected by minimum number of edges.

 If all the vertices are connected in a graph, then there exists at least one

spanning tree. In a graph, there may exist more than one spanning tree.

Properties

• A spanning tree does not have any cycle.

• Any vertex can be reached from any other vertex.

 J4 J1

Example

 In the following graph, the highlighted edges form a spanning tree.

Minimum Spanning Tree

 A Minimum Spanning Tree (MST) is a subset of edges of a connected

weighted undirected graph that connects all the vertices together with the

minimum possible total edge weight. One graph may have more than one

spanning tree. If there are n numbers of vertices, the spanning tree should

have n - 1 number of edges. In this context, if each edge of the graph is

associated with a weight and there exists more than one spanning tree, we need

to find the minimum spanning tree of the graph.

 To derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used.

Prim’s Algorithm
• Prim’s Algorithm is a famous greedy algorithm.

• It is used for finding the Minimum Spanning Tree (MST) of a given

graph.

• To apply Prim’s algorithm, the given graph must be weighted, connected

and undirected.

Prim’s Algorithm Implementation

The implementation of Prim’s Algorithm is explained in the following

steps-

Algorithm Prim(E, Cost, n, t)

{

 Let (k,l) be an edge of minimum cost in E;

 mincost:=cost[k,l];

 t[1,1]:=k; t[1,2]:=l;

 for i:=1 to n do

 if(cost[i,l]<cost[i,k]) then near[i]:=l;

 else near[i]:=k;

 near[k]:=near[l]:=0;

 for i:=2 to n-1 do

 {

 Let J be an index such that near[j] ≠ 0 and

 cost[j,near[j]] is minimum;

 t[i,1]:=t[i,2]:=near[j];

 mincost:=mincost+cost[j,near[j]];

 near[j]:=0;

 for k:=1 to n do

 if((near[k] ≠ 0) and (cost[k, near[k]]>cost[k,j]))

 then near[k]:=j;

 }

 return mincost;

}

Step-01:

• Randomly choose any vertex.

• The vertex connecting to the edge having least weight is usually selected.

 Step-02:

• Find all the edges that connect the tree to new vertices.

• Find the least weight edge among those edges and include it in the

existing tree.

• If including that edge creates a cycle, then reject that edge and look for

the next least weight edge.

 Step-03:

• Keep repeating step-02 until all the vertices is included and Minimum

Spanning Tree (MST) is obtained.

Prim’s Algorithm Time Complexity-

Worst case time complexity of Prim’s Algorithm is-

• O(ElogV) using binary heap

• O(E + VlogV) using Fibonacci heap

Example

Solution-

The above discussed steps are followed to find the minimum cost spanning tree

using Prim’s Algorithm-

Step-01:

Step-02:

Step-03:

Step-04:

Step-05:

Step-06:

Since all the vertices have been included in the MST, so we stop.

 Now, Cost of Minimum Spanning Tree

= Sum of all edge weights

= 10 + 25 + 22 + 12 + 16 + 14

= 99 units

Kruskal’s Algorithm

• Kruskal’s Algorithm is a famous greedy algorithm.

• It is used for finding the Minimum Spanning Tree (MST) of a given

graph.

• To apply Kruskal’s algorithm, the given graph must be weighted,

connected and undirected.

Kruskal’s Algorithm Implementation-

Algorithm Kruskal(E, cost, n, t)

{

 Construct a heap out of the edge costs using Heapify;

 for i:= 1 to n do parent[i]:=-1;

 i:=0; mincost:=0.0;

 while ((i<n-1) and (heap not empty)) do

 {

 Delete a minimum cost edge (u,v) from a heap

 and reheapify using Adjust;

 j:=Find(u); k:=Find(v);

 if(j ≠ k) then

 {

 i:=i+1;

 t[i,1]:=u; t[i,2]:=v;

 mincost:= mincost+cost[u,v];

 Union(j,k);

 }

 }

 if(i ≠ n-1) then write (“No Spanning tree”);

 else return mincost;

}
 The implementation of Kruskal’s Algorithm is explained in the following

steps-

step-01:

• Sort all the edges from low weight to high weight.

Step-02:

• Take the edge with the lowest weight and use it to connect the vertices of

graph.

• If adding an edge creates a cycle, then reject that edge and go for the next

least weight edge.

Step-03:

• Keep adding edges until all the vertices are connected and a Minimum

Spanning Tree (MST) is obtained.

Kruskal’s Algorithm Time Complexity-

Worst case time complexity of Kruskal’s Algorithm

 O(ElogV) or O(ElogE)

 Example-

Solution-
 To construct MST using Kruskal’s Algorithm,

• Simply draw all the vertices on the paper.

• Connect these vertices using edges with minimum weights such that no

cycle gets formed.

 Step-01

Step-02:

Step-03:

Step-04:

Step-05:

Step-06:

Step-07:

Since all the vertices have been connected / included in the MST, so we stop.

 Weight of the MST

 = Sum of all edge weights

 = 10 + 25 + 22 + 12 + 16 + 14

 = 99 units

Optimal Merge Patterns

 Merge a set of sorted files of different length into a single sorted file. We

need to find an optimal solution, where the resultant file will be generated in

minimum time.

 If the number of sorted files are given, there are many ways to merge

them into a single sorted file. This merge can be performed pair wise. Hence,

this type of merging is called as 2-way merge patterns.

 As, different pairings require different amounts of time, in this strategy

we want to determine an optimal way of merging many files together. At each

step, two shortest sequences are merged.

 To merge a p-record file and a q-record file requires possibly p +

q record moves, the obvious choice being, merge the two smallest files

together at each step.

 Two-way merge patterns can be represented by binary merge trees. Let

us consider a set of n sorted files {f1, f2, f3, …, fn}. Initially, each element of

this is considered as a single node binary tree. To find this optimal solution, the

following algorithm is used.

Algorithm: TREE (n)

for i := 1 to n – 1 do

 declare new node

 node.leftchild := least (list)

 node.rightchild := least (list)

 node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)

 insert (list, node);

return least (list);

At the end of this algorithm, the weight of the root node represents the optimal

cost.

Example

 Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30

number of elements respectively.

If merge operations are performed according to the provided sequence, then

M1 = merge f1 and f2 => 20 + 30 = 50

M2 = merge M1 and f3 => 50 + 10 = 60

M3 = merge M2 and f4 => 60 + 5 = 65

M4 = merge M3 and f5 => 65 + 30 = 95

Hence, the total number of operations is

50 + 60 + 65 + 95 = 270

Now, the question arises is there any better solution?

Sorting the numbers according to their size in an ascending order, we get the

following sequence −

f4, f3, f1, f2, f5

Hence, merge operations can be performed on this sequence

M1 = merge f4 and f3 => 5 + 10 = 15

M2 = merge M1 and f1 => 15 + 20 = 35

M3 = merge M2 and f2 => 35 + 30 = 65

M4 = merge M3 and f5 => 65 + 30 = 95

Therefore, the total number of operations is

15 + 35 + 65 + 95 = 210

Obviously, this is better than the previous one.

In this context, we are now going to solve the problem using this algorithm.

Initial Set

Step-1

Step-2

Step-3

Step-4

 Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of

comparisons.

Huffman Codes

• Binary trees with minimal weighted external path length is to obtain an

optimal set of codes for messages M1,......,Mn+1.

• Each code is a binary string that is used for transmission of the

corresponding message.

• At the receiving end the code is decoded using a decode tree.

• A decode tree is a binary tree in which external nodes represent

messages.

• The binary bits code word for a message determine the branching needed

at each level of the decode tree to reach the correct external node.

 0 1

 0 1

 0 1

• We interpret a zero as a left branch and a one as a right branch, then the

decode tree corresponds to codes 000,001,01 and 1 for messages M1, M2,

M3 and M4 respectively. These codes are called Huffman codes.

• The cost of decoding a code word is propositional to the number of bits

in the code.

• This number is equal to the distance of the corresponding external node

from the root node.

• If qi is the relative frequency with which message Mi will be transmitted,

then the expected decode time is∑1≤i≤n+1qidi where di is the distance of

the external for message Mi from the root node.

• The expected decode time is minimized by choosing code words

resulting in a decode tree with minimal weighted external path

Optimal Storage on Tapes

1. Given n programs to be stored on tape, the lengths of these programs are

i1, i2….in respectively. Suppose the programs are stored in the order of

i1, i2…in. 2 We have a tape of length L i.e. the storage capacity of the

tape is L. We are also given n programs where length of each program is i

is Li.

M1 M4

M3

M2 M1

2. Let Tj be the time to retrieve program ij.

3. It is now required to store these programs on the tape in such a way so

that the mean retrieval time is minimum. MRT is the average tome

required to retrieve any program stored on this tape.

4. Assume that the tape is initially positioned at the beginning.

5. Tj is proportional to the sum of all lengths of programs stored in front of

the program ij.

6. The goal is to minimize MRT (Mean Retrieval Time),(1/n) ∑i=0Tj

I.e., want to minimize ∑j=1∑k=1Ti

Example:
Input : n = 3 L[] = { 5, 3, 10 }

Output : Order should be { 3, 5, 10 } with MRT = 29/3

1. Here, n=3 and (L1, L2, L3) = (5, 10, 3). We can store these 3 programs

on the tape in any order but we want that order which will minimize the

MRT.

n

n j

2. Suppose we store the programs in order (L1, L2, L3).

3. Then MRT is given as (5+(5+10)+(5+10+3))/3=38/3

4. To retrieve L1 we need 5 units of time. Because a tape is a sequential

device we will have to first pass through entire L1 even if we want to

retrieve L2.

5. Hence, retrieval time (RT) is 5 for program 1 and (5+10) for program 2.

6. Similarly, if program 3 is also considered then the total RT becomes 5+

(5+10) + (5+10+3) where (5+10+3) is the RT for program 3.

7. Since we want to find the mean retrieval time we add all the RT and then

divide the sum by n.

8. The aim over here is to find the minimum MRT. To do this we consider

all the possible orderings of these 3 programs. Since there 3 programs we

can have at the most 6(3!) combinations.

9. Consider the below table:

Ordering MRT

L1,L2,L3 5+(5+10)+(5+10+3)/3=38/3

L1,L3,L2 5+(5+3)+(5+10+3)/3=31/3

L2,L1,L3 10+(5+10)+(5+10+3)/3=43/3

Ordering MRT

L2,L3,L1 10+(3+10)+(5+10+3)/3=41/3

L3,L1,L2 3+(5+3)+(5+10+3)/3=29/3

L3,L2,L1 3+(3+10)+(5+10+3)/3=34/3

1. It should be seen that the minimum MRT of (29/3) is obtained in case of

(L1, L2, L3). Hence the optimal solution is achieved if the programs are

stored in increasing order of their lengths.

2. Hence, a greedy approach to solving the problem is continuously select

programs in increasing order of their lengths.

3. If L is an array having program length in ascending order.

4. The time complexity of this algorithm including the time to do sorting

is O(n2).

Single Source Shortest Paths

➢ Graphs can be used to represent the highway structure of a state or

country with vertices representing cities and edges representing sections

of highway.

➢ The edges can then be assigned weights which may be either the distance

between the two cities connected by the edge or the average time to

drive along that section of highway

➢ The length of a path is now defined to be the sum of the weights of the

edges on that path.

➢ The starting vertex of the path is referred to as the source, and the last

vertex the destination.

➢ We are given a directed graph G=(V,E), a weighting function cost for the

edges of G, and a source vertex vo.

➢ The problem is to determine the shortest paths from v0 to all the

remaining vertices of G.

➢ The shortest path between v0 and some other node v is an ordering

among s subset of the edges. Hence this problem fits the ordering

paradigm.

➢ To generate the shortest paths in this order, we need to be able to

determine

1. The next vertex to which a shortest path must be generated

2. A shortest path to this vertex. Let S denote the set of vertices

(including v0) to which the shortest paths have already been

generated . For w not is S, let dist[w] be the length of the shortest

path starting from v0, going through only those vertices that are in

S, and ending at w.

Algorithm ShortestPaths(v, cost, dist, n)

{

for i:=1 to n do

{

 S[i]:=false;

 dist[i]:=cost[v,i];

}

S[v]:=true;

dist[v]:=0.0;

for num:=2 to n do

{

 Choose u from among those vertices not in S such that dist[u] is

minimum;

S[u]:=true;

for (each w adjacent to u with S[w]=false) do

 if(dist[w]:=dist[u]+cost[u,w];

}

}

Example

 Find the shortest distance from source vertex ‘S’ to remaining vertices in the

following graph-

Length Adjacency Matrix

 S a b c d e

S 0 1 5

A 0 2 2 1

B 0 2

C 0 3 1

D 0 2

E 0

Also, write the order in which the vertices are visited.

 Solution-

 Step-01:

 The following two sets are created-

• Unvisited set : {S , a , b , c , d , e}

• Visited set : { }

Step-02:

 The two variables Π and d are created for each vertex and initialized as-

• Π[S] = Π[a] = Π[b] = Π[c] = Π[d] = Π[e] = NIL

• d[S] = 0

• d[a] = d[b] = d[c] = d[d] = d[e] = ∞

 Step-03:

 Vertex ‘S’ is chosen.

• This is because shortest path estimate for vertex ‘S’ is least.

• The outgoing edges of vertex ‘S’ are relaxed.

 Before Edge Relaxation-

Now,

• d[S] + 1 = 0 + 1 = 1 < ∞

∴ d[a] = 1 and Π[a] = S

• d[S] + 5 = 0 + 5 = 5 < ∞

∴ d[b] = 5 and Π[b] = S

 After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

• Unvisited set : {a , b , c , d , e}

• Visited set : {S}

 Step-04:

 Vertex ‘a’ is chosen.

• This is because shortest path estimate for vertex ‘a’ is least.

• The outgoing edges of vertex ‘a’ are relaxed.

 Before Edge Relaxation-

Now,

• d[a] + 2 = 1 + 2 = 3 < ∞

∴ d[c] = 3 and Π[c] = a

• d[a] + 1 = 1 + 1 = 2 < ∞

∴ d[d] = 2 and Π[d] = a

• d[b] + 2 = 1 + 2 = 3 < 5

∴ d[b] = 3 and Π[b] = a

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

• Unvisited set : {b , c , d , e}

• Visited set : {S , a}

Step-05:

 Vertex ‘d’ is chosen.

• This is because shortest path estimate for vertex ‘d’ is least.

• The outgoing edges of vertex ‘d’ are relaxed.

 Before Edge Relaxation-

 Now,

• d[d] + 2 = 2 + 2 = 4 < ∞

∴ d[e] = 4 and Π[e] = d

 After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

• Unvisited set : {b , c , e}

• Visited set : {S , a , d}

Step-06:

 Vertex ‘b’ is chosen.

• This is because shortest path estimate for vertex ‘b’ is least.

• Vertex ‘c’ may also be chosen since for both the vertices, shortest path

estimate is least.

• The outgoing edges of vertex ‘b’ are relaxed.

Before Edge Relaxation-

Now,

• d[b] + 2 = 3 + 2 = 5 > 2

∴ No change

After edge relaxation, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

• Unvisited set : {c , e}

• Visited set : {S , a , d , b}

 Step-07:

 Vertex ‘c’ is chosen.

• This is because shortest path estimate for vertex ‘c’ is least.

• The outgoing edges of vertex ‘c’ are relaxed.

Before Edge Relaxation-

Now,

• d[c] + 1 = 3 + 1 = 4 = 4

∴ No change

After edge relaxation, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

• Unvisited set : {e}

• Visited set : {S , a , d , b , c}

 Step-08:

 Vertex ‘e’ is chosen.

• This is because shortest path estimate for vertex ‘e’ is least.

• The outgoing edges of vertex ‘e’ are relaxed.

• There are no outgoing edges for vertex ‘e’.

• So, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

• Unvisited set : { }

• Visited set : {S , a , d , b , c , e}

Now,

• All vertices of the graph are processed.

• Our final shortest path tree is as shown below.

• It represents the shortest path from source vertex ‘S’ to all other

remaining vertices.

The order in which all the vertices are processed is :

S , a , d , b , c , e.

