
UNIT – III 

GRAPHS  

Definition 

 A graph G consists of two sets V and E. V is a finite non-empty set of 

vertices. E is a set of pairs of vertices, these pairs are called edges. V(G) and 

E(G) will represent the set of vertices and edges of graph G. G(V,E) to represent 

a graph. 

 

Undirected Graph 

• An undirected graph the pairs of vertices representing any edge is 

unordered. Thus, the pairs (v1,v2) and (v2,v1) represent the same edge. 

• The vertices are represented by circles and the edges by lines. 

• An edge with no orientation in our undirected edge. 

Directed Graph 

•  In a directed graph each edge is represented by a directed pair <v1, v2>. 

V1 is the tail and v2 is the head of the edge. Therefore <v2,v1> and 

<v1,v2> represent two different edges. 

• An edge with an orientation is a directed edge. 

• if all the edges are directed; then the graph is a directed graph. A directed 

graph is also called as digraph. 



Complete Graph  

• A complete graph is a simple undirected graph in which every pair of 

distinct vertices is connected by a unique edge. 

•  therefore, the complete digraph is a directed graph in which every pair 

of distinct vertices is connected by a pair of unique edges (one in each 

direction). 

•  The complete graph on n vertices is denoted by Kn. 

 Kn has n(n−1)/2 edges and is a regular graph of degree n−1. 

Adjacent and Incident 

• If (v0, v1) is an edge in an undirected graph, 

o v0 and v1 are adjacent 

o The edge (v0, v1) is incident on vertices v0 and v1 

• if <v0, v1> is an edge in a directed graph 

o v0 is adjacent to v1, and v1 is adjacent from v0 

o The edge <v0, v1> is incident on v0 and v1 
 

Subgraph 

 A graph G = (V1, E1) is called subgraph of a graph G(V, E) if V1(G) is a 

subset of V(G) and E1(G) is a subset of E(G) such that each edge of G1 has 

same end vertices as in G. 

https://www.tutorialscan.com/data_structure/array-data-structure/
https://www.tutorialscan.com/data_structure/classification-of-data-structure/


  

    

  

 

  G1  some of the subgraphs of G1 

 

                                             

 

 

 

 

 

 

 G3   some of the sub graphs of G3 

 

Path 

 A path from vertex vp to vertex vq in a graph G , is a sequence of vertices, 

vp, vi1, vi2, ..., vin, vq, such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges in an 

undirected graph. The length of a path is the number of edges on it. 
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ADT for Graph 

Structure Graph is 

objects: a nonempty set of vertices and a set of undirected edges, where 

each edge is a pair of vertices 

functions: for all graph  Graph, v, v1 and v2  Vertices 

Graph Create()::=return an empty graph 

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no  

      incident edge. 

Graph InsertEdge(graph, v1,v2)::= return a graph with new edge 

            between v1 and v2 

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges 

      incident to it are removed 

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, 

v2) is removed 

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE 

       else return FALSE 

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to   v 



Graph Representations 

 In graph theory, a graph representation is a technique to store graph into 

the memory of computer. 

 To represent a graph, we just need the set of vertices, and for each vertex 

the neighbors of the vertex (vertices which is directly connected to it by an 

edge). If it is a weighted graph, then the weight will be associated with each 

edge. 

 There are different ways to optimally represent a graph, depending on the 

density of its edges, type of operations to be performed and ease of use. 

Adjacency Matrix 

o Adjacency matrix is a sequential representation. 

o It is used to represent which nodes are adjacent to each other. i.e. is there 

any edge connecting nodes to a graph. 

o In this representation, we have to construct a nXn matrix A. If there is 

any edge from a vertex i to vertex j, then the corresponding element of A, 

ai,j = 1, otherwise ai,j= 0. 

o If there is any weighted graph then instead of 1s and 0s, we can store the 

weight of the edge. 

Example 

Consider the following undirected graph representation: 

n 



Directed graph represenation 

See the directed graph representation: 

 

In the above examples, 1 represents an edge from row vertex to column vertex, 

and 0 represents no edge from row vertex to column vertex. 

Adjacency List 

o Adjacency list is a linked representation. 

o In this representation, for each vertex in the graph, we maintain the list of 

its neighbors. It means, every vertex of the graph contains list of its 

adjacent vertices. 

o We have an array of vertices which is indexed by the vertex number and 

for each vertex v, the corresponding array element points to a singly 

linked list of neighbors of v. 

Example 

Let's see the following directed graph representation implemented using linked 

list: 

 

 

  



We can also implement this representation using array as follows: 

 

Advantages 

o Adjacency list saves lot of space. 

o We can easily insert or delete as we use linked list. 

o Such kind of representation is easy to follow and clearly shows the 

adjacent nodes of node. 

Disadvantages 

o The adjacency list allows testing whether two vertices are adjacent to 

each other but it is slower to support this operation. 

Adjacency MultiLists  

• Adjacency Multi-lists are an edge, rather than vertex based, graph 

representation. In the Multilist representation of graph structures; these 

are two parts, a directory of Node information and a set of linked list of 

edge information. 

• There is one entry in the node directory for each node of the graph. The 

directory entry for node i points to a linked adjacency list for node i. each 

record of the linked list area appears on two adjacency lists: one for the 

node at each end of the represented edge. 



Graph Traversal 

 Graph traversal is the problem of visiting all the nodes in a graph in a 

particular manner, updating and/or checking their values along the way. The 

order in which the vertices are visited may be important, and may depend upon 

the particular algorithm. 

The two common traversals: 

• Breadth-first search 

• Depth-first search 

Breadth-first search 

• Breadth-first search (BFS) is a graph search algorithm that begins at the 

root node and explores all the neighbouring nodes. Then for each of those 

nearest nodes, the algorithm explores their unexplored neighbour nodes, 

and so on, until it finds the goal. 

• A breadth-first search (BFS) explores nodes nearest the root before 

exploring nodes further away. 

Procedure BFS(v) 

 VISITED(v)         1 

 Initialize Q with vertex v in it 

 while Q not empty do 

  call DELETEQ(v, Q) 

  for all vertices w adjacent to v do 

   if VISITED(w) = 0 

    then [ call ADDQ(w, Q); VISITED(w)          1] 

  end 

 end 



end 

Example 

 

As in the example given above, BFS algorithm traverses from A to B to E to F 

first then to C and G lastly to D. It employs the following rules. 

• Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display 

it. Insert it in a queue. 

• Rule 2 − If no adjacent vertex is found, remove the first vertex from the 

queue. 

• Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 

Step Traversal Description 



1 

 

Initialize the queue. 

2 

 

We start from 

visiting S (starting node), 

and mark it as visited. 

3 

 

We then see an unvisited 

adjacent node from S. In 

this example, we have three 

nodes but alphabetically we 

choose A, mark it as visited 

and enqueue it. 

4 

 

Next, the unvisited adjacent 

node from S is B. We mark 

it as visited and enqueue it. 



5 

 

Next, the unvisited adjacent 

node from S is C. We mark 

it as visited and enqueue it. 

6 

 

Now, S is left with no 

unvisited adjacent nodes. 

So, we dequeue and find A. 

7 

 

From A we have D as 

unvisited adjacent node. We 

mark it as visited and 

enqueue it. 

At this stage, we are left with no unmarked (unvisited) nodes. But as per the 

algorithm we keep on dequeuing in order to get all unvisited nodes. When the 

queue gets emptied, the program is over. 

 Running time of BFS is O(n2). 

Applications of Breadth-First Search Algorithm 

Breadth-first search can be used to solve many problems such as: 



• Finding all connected components in a graph G. 

• Finding all nodes within an individual connected component. 

• Finding the shortest path between two nodes, u and v, of an unweighted 

graph. 

• Finding the shortest path between two nodes, u and v, of a weighted 

graph. 

Depth First Search 

 Depth First Search (DFS) algorithm traverses a graph in a depthward 

motion and uses a stack to remember to get the next vertex to start a search, 

when a dead end occurs in any iteration. 

Procedure DFS (v) 

 VISITED (v)            1 

 for each vertex w adjacent to v do 

  if VISITED(w) = 0 then call DFS(w) 

 end 

end  

 Running time is O(n2) 

Example 

 



 As in the example given above, DFS algorithm traverses from S to A to 

D to G to E to B first, then to F and lastly to C. It employs the following rules. 

• Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display 

it. Push it in a stack. 

• Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. 

(It will pop up all the vertices from the stack, which do not have adjacent 

vertices.) 

• Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

Step Traversal Description 

1 

 

Initialize the stack. 

2 

 

Mark S as visited and put it 

onto the stack. Explore any 

unvisited adjacent node 

from S. We have three nodes 

and we can pick any of them. 

For this example, we shall 

take the node in an 

alphabetical order. 



3 

 

Mark A as visited and put it 

onto the stack. Explore any 

unvisited adjacent node from 

A. Both S and D are adjacent 

to A but we are concerned for 

unvisited nodes only. 

4 

 

Visit D and mark it as visited 

and put onto the stack. Here, 

we have B and C nodes, 

which are adjacent to D and 

both are unvisited. However, 

we shall again choose in an 

alphabetical order. 

5 

 

We choose B, mark it as 

visited and put onto the stack. 

Here B does not have any 

unvisited adjacent node. So, 

we pop B from the stack. 



6 

 

We check the stack top for 

return to the previous node 

and check if it has any 

unvisited nodes. Here, we 

find D to be on the top of the 

stack. 

7 

 

Only unvisited adjacent node 

is from D is C now. So we 

visit C, mark it as visited and 

put it onto the stack. 

As C does not have any unvisited adjacent node so we keep popping the stack 

until we find a node that has an unvisited adjacent node. In this case, there's 

none and we keep popping until the stack is empty. 

Applications of Depth-First Search Algorithm 

Depth-first search is useful for: 

• Finding a path between two specified nodes, u and v, of an unweighted 

graph. 

• Finding a path between two specified nodes, u and v, of a weighted 

graph. 

• Finding whether a graph is connected or not. 

• Computing the spanning tree of a connected graph. 



Connected Components  

o If G is an undirected graph, then one can determine whether or not it is 

connected by simply making a call to either DFS or BFS and then 

determining if there is any unvisited vertex. 

o O(n2) If adjacency matrices are used and O(e) if adjacency lists are used. 

o Algorithm COMP which determines all the connected components of G. 

o The algorithm uses DFS.  

 

Procedure COMP (G, n) 

 for  i          1 to n do 

  VISITED (i)            0 

 end 

 for  i          1 to n do 

  if VISITED (i)            0 then [call DFS(i); output all newly visited 

vertices together with all edges incident to them] 

 end 

end COMP 

 

o if G is represented by its adjacency lists, then the total time taken by DFS 

is O(e). The output can be completed in time O(e) if DFS keeps a list of all 

newly visited vertices. 

o The total time to generate all the connected components is O (n+e). 

 

Spanning Tree 

 A spanning tree is a subset of Graph G, which has all the vertices covered 

with minimum number of edges. Hence, a spanning tree does not have 

cycles and it cannot be disconnected. 



 

 The spanning tree resulting from a call to DFS is known as a depth first 

spanning tree. When BFS is used, the resulting spanning tree is called as 

breadth first spanning tree. 

Minimum Spanning Tree (MST) 

 In a weighted graph, a minimum spanning tree is a spanning tree that has 

minimum weight than all other spanning trees of the same graph. In real-world 

situations, this weight can be measured as distance, congestion, traffic load or 

any arbitrary value denoted to the edges. 

Kruskal’s Algorithm 

 Kruskal's algorithm to find the minimum cost spanning tree uses the 

greedy approach. This algorithm treats the graph as a forest and every node it 

has as an individual tree. A tree connects to another only and only if, it has the 

least cost among all available options and does not violate MST properties. 

T          0 

while T contains less than n-1 edges do 

 choose an edge (v,w) from E of lowest cost; 

 delete (v,w) from E; 

 if(v,w) does not create a cycle in T 

  then add(v,w) to T 

 else discard(v,w) 

end  

 



Example 

 

Step 1 - Remove all loops and Parallel Edges 

Remove all loops and parallel edges from the given graph. 

 

In case of parallel edges, keep the one which has the least cost associated and 

remove all others. 

 



Step 2 - Arrange all edges in their increasing order of weight 

The next step is to create a set of edges and weight, and arrange them in an 

ascending order of weightage (cost). 

 

Step 3 - Add the edge which has the least weightage 

Now we start adding edges to the graph beginning from the one which has the 

least weight. Throughout, we shall keep checking that the spanning properties 

remain intact. In case, by adding one edge, the spanning tree property does not 

hold then we shall consider not to include the edge in the graph. 

 

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding 

them does not violate spanning tree properties, so we continue to our next edge 

selection. 

Next cost is 3, and associated edges are A,C and C,D. We add them again − 

 



Next cost in the table is 4, and we observe that adding it will create a circuit in 

the graph. − 

 

We ignore it. In the process we shall ignore/avoid all edges that create a circuit. 

 

We observe that edges with cost 5 and 6 also create circuits. We ignore them 

and move on. 

 

Now we are left with only one node to be added. Between the two least cost 

edges available 7 and 8, we shall add the edge with cost 7. 



 

By adding edge S, A. We have included all the nodes of the graph and we now 

have minimum cost spanning tree. 

All Pairs Shortest Paths 

• The all pair shortest path algorithm is also known as Floyd-Warshall 

algorithm is used to find all pair shortest path problem from a given 

weighted graph.  

• As a result of this algorithm, it will generate a matrix, which will 

represent the minimum distance from any node to all other nodes in the 

graph. 

 

• At first the output matrix is same as given cost matrix of the graph. After 

that the output matrix will be updated with all vertices k as the 

intermediate vertex. 

• The time complexity of this algorithm is O(V3), here V is the number of 

vertices in the graph. 

• The graph G is represented by its cost adjacency matrix with COSt(i,i)=0 

and COST(i,j)=+∞ in case edge <i, j>, i≠j is not in G 



• Ak(i,j) to be the cost of the shortest path from i to j going through no 

intermediate vertex of index greater than k. 

• All pairs shortest algorithm is to successively generate the matrices A0, 

A1, A2,..., An. 

• To generate Ak by realizing that for any pair of vertices i, j either 

1. The shortest paths from i to j going through no vertex with index 

greater than k does not go through the vertex with index k and so 

its cost is Ak-1(i,j) 

Ak(i,j) = min{Ak-1(i,j), Ak-1(i,k)+Ak-1(k,j)}, k≥1 and  

A0(i,j)= COST(i,j) 

Procedure ALL_COSTS(COST, A, n) 

for i := 1 to n, do 

 for j := 1 to n, do 

  A(i,j)       COST(i,j) 

 end 

end     

for k := 1 to n, do 

      for i := 1 to n, do 

         for j := 1 to n, do 

A(i,j) = min{A(i,j), A(i,k)+A(k,j)} 

end 

 end 

end 

 

Example  

 



A0   1  2  3      A1   1  2  3 

---------------------------- 

1   0  4  11     1   0  4  11 

 

2   6  0   2     2   6  0   2 

 

3   3    0     3   3  7   0 

 

 

A2  1  2  3      A3  1  2  3 

---------------------------- 

1  0  4  6     1   0  4  6 

 

2  6  0  2     2   5  0  2 

 

3  3  7  0     3   3  7  0 

 

Transitive Closure 

• A problem related to the all pairs shortest path problem is that of 

determining for every pair of vertices i,j in G the existence of a path 

from i to j.  

• Two cases are of interest, one when all path lengths (i.e., the number of 

edges on the path) are required to be positive and the other when path 

lengths are to be nonnegative. 

•  If A is the adjacency matrix of G, then the matrix A+ having the 

property A+ (i,j) = 1 if there is a path of length > 0 from i to j and 0 

otherwise is called the transitive closure matrix of G. 

• The matrix A* with the property A* (i,j) = 1 if there is a path of length 0 

from i to j and 0 otherwise is the reflexive transitive closure matrix of G. 

 



 

 

 

 Graph G and Its Adjacency Matrix A, A+ and A* 

• The only difference between A* and A+ is in the terms on the 

diagonal. A+(i,i) = 1 iff there a cycle of length > 1 containing 

vertex i while A*(i,i) is always one as there is a path of length 0 from i to i. 

•  If we use algorithm ALL_COSTS with COST(i,j) = 1 if <i,j> is an edge 

in G and COST(i,j) = +  if <i,j> is not in G, then we can easily obtain A+ from 

the final matrix A by letting A+ (i,j) = 1 iff A (i,j) < + . A* can be obtained 

from A+ by setting all diagonal elements equal 1.  



Single Source All Destinations 

• In a Single Source Shortest Paths Problem, we are given a Graph G = 

(V, E), we want to find the shortest path from a given source vertex s ∈ V 

to every vertex v ∈ V. 

• Let S denote the set of vertices (including vo) to which the shortest paths 

have already been found. For w not in S, let DIST(w) be the length of the 

shortest path starting from vo going through only those vertices which are 

in S and ending at w.  

•  If the next shortest path is to vertex u, then the path begins at vo, ends 

at u and goes through only those vertices which are in S.  

• The destination of the next path generated must be that vertex u which 

has the minimum distance, DIST(u), among all vertices not in S. 

•  Having selected a vertex u as in (ii) and generated the 

shortest vo to u path, vertex u becomes a member of S. At this point the 

length of the shortest paths starting at vo, going through vertices only 

in S and ending at a vertex w not in S  

• a path from vo to u to w where the path from vo to u is the shortest such 

path and the path from u to w is the edge <u,w>. The length of this path is 

DIST(u) + length (<u,w>) 

procedure SHORTEST-PATH (v,COST,DIST,n) 

declare S (1: n) 

1     for i  1 to n do     //initialize set S to empty// 

2        S(i)  0; DIST(i)  COST(v,i) 

3     end 

4     S(v)  1; DIST(v)  0; num  2      //put vertex v in set 

S// 

5     while num < n do     //determine n - 1 paths from vertex v// 

6       choose u: DIST(u) = min {DIST(w)} 

S(w)=0 

7       S(u)  1; num  num + 1    //put vertex u in set S// 

8       for all w with S(w) = 0 do  //update distances// 



9          DIST(w)  min {DIST(w),DIST(u) + COST(u,w)} 

10       end 

11     end 

12 end SHORTEST-PATH 

Example  

 

Figure (a) 

 

Figure (b) Cost Adjacency Matrix for Figure (a). 
                 Vertex          LA    SF     D      C    B   NY    M    NO 

Iteration  S     Selected    (1)    (2)     (3)    (4) (5)  (6)  (7)  (8) 

Initial               --     +     +     +     1500  0  250   +    +  

1        5            6      +     +     +     1250  0  250  1150  1650 

2        5,6          7      +     +     +     1250  0  250  1150  1650 

3        5,6,7        4      +     +     2450   1250  0  250  1150  1650 

4        5,6,7,4      8      3350  +      2450   1250  0  250  1150  1650 

5        5,6,7,4,8    3      3350  3250    2450   1250  0  250  1150  1650 

6        5,6,7,4,8,3  2      3350  3250    2450   1250  0  250  1150  1650 

         5,6,7,4,8,3,2 

Action of SHORTEST_PATH  


