
UNIT – III

GRAPHS

Definition

 A graph G consists of two sets V and E. V is a finite non-empty set of

vertices. E is a set of pairs of vertices, these pairs are called edges. V(G) and

E(G) will represent the set of vertices and edges of graph G. G(V,E) to represent

a graph.

Undirected Graph

• An undirected graph the pairs of vertices representing any edge is

unordered. Thus, the pairs (v1,v2) and (v2,v1) represent the same edge.

• The vertices are represented by circles and the edges by lines.

• An edge with no orientation in our undirected edge.

Directed Graph

• In a directed graph each edge is represented by a directed pair <v1, v2>.

V1 is the tail and v2 is the head of the edge. Therefore <v2,v1> and

<v1,v2> represent two different edges.

• An edge with an orientation is a directed edge.

• if all the edges are directed; then the graph is a directed graph. A directed

graph is also called as digraph.

Complete Graph

• A complete graph is a simple undirected graph in which every pair of

distinct vertices is connected by a unique edge.

• therefore, the complete digraph is a directed graph in which every pair

of distinct vertices is connected by a pair of unique edges (one in each

direction).

• The complete graph on n vertices is denoted by Kn.

 Kn has n(n−1)/2 edges and is a regular graph of degree n−1.

Adjacent and Incident

• If (v0, v1) is an edge in an undirected graph,

o v0 and v1 are adjacent

o The edge (v0, v1) is incident on vertices v0 and v1

• if <v0, v1> is an edge in a directed graph

o v0 is adjacent to v1, and v1 is adjacent from v0

o The edge <v0, v1> is incident on v0 and v1

Subgraph

 A graph G = (V1, E1) is called subgraph of a graph G(V, E) if V1(G) is a

subset of V(G) and E1(G) is a subset of E(G) such that each edge of G1 has

same end vertices as in G.

https://www.tutorialscan.com/data_structure/array-data-structure/
https://www.tutorialscan.com/data_structure/classification-of-data-structure/

 G1 some of the subgraphs of G1

 G3 some of the sub graphs of G3

Path

 A path from vertex vp to vertex vq in a graph G , is a sequence of vertices,

vp, vi1, vi2, ..., vin, vq, such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges in an

undirected graph. The length of a path is the number of edges on it.

0

0

1 2 1 2

3

0 0

1 2

3

0

1

2

0

1

0

1

2

ADT for Graph

Structure Graph is

objects: a nonempty set of vertices and a set of undirected edges, where

each edge is a pair of vertices

functions: for all graph  Graph, v, v1 and v2  Vertices

Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no

 incident edge.

Graph InsertEdge(graph, v1,v2)::= return a graph with new edge

 between v1 and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges

 incident to it are removed

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1,

v2) is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE

 else return FALSE

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

Graph Representations

 In graph theory, a graph representation is a technique to store graph into

the memory of computer.

 To represent a graph, we just need the set of vertices, and for each vertex

the neighbors of the vertex (vertices which is directly connected to it by an

edge). If it is a weighted graph, then the weight will be associated with each

edge.

 There are different ways to optimally represent a graph, depending on the

density of its edges, type of operations to be performed and ease of use.

Adjacency Matrix

o Adjacency matrix is a sequential representation.

o It is used to represent which nodes are adjacent to each other. i.e. is there

any edge connecting nodes to a graph.

o In this representation, we have to construct a nXn matrix A. If there is

any edge from a vertex i to vertex j, then the corresponding element of A,

ai,j = 1, otherwise ai,j= 0.

o If there is any weighted graph then instead of 1s and 0s, we can store the

weight of the edge.

Example

Consider the following undirected graph representation:

n

Directed graph represenation

See the directed graph representation:

In the above examples, 1 represents an edge from row vertex to column vertex,

and 0 represents no edge from row vertex to column vertex.

Adjacency List

o Adjacency list is a linked representation.

o In this representation, for each vertex in the graph, we maintain the list of

its neighbors. It means, every vertex of the graph contains list of its

adjacent vertices.

o We have an array of vertices which is indexed by the vertex number and

for each vertex v, the corresponding array element points to a singly

linked list of neighbors of v.

Example

Let's see the following directed graph representation implemented using linked

list:

We can also implement this representation using array as follows:

Advantages

o Adjacency list saves lot of space.

o We can easily insert or delete as we use linked list.

o Such kind of representation is easy to follow and clearly shows the

adjacent nodes of node.

Disadvantages

o The adjacency list allows testing whether two vertices are adjacent to

each other but it is slower to support this operation.

Adjacency MultiLists

• Adjacency Multi-lists are an edge, rather than vertex based, graph

representation. In the Multilist representation of graph structures; these

are two parts, a directory of Node information and a set of linked list of

edge information.

• There is one entry in the node directory for each node of the graph. The

directory entry for node i points to a linked adjacency list for node i. each

record of the linked list area appears on two adjacency lists: one for the

node at each end of the represented edge.

Graph Traversal

 Graph traversal is the problem of visiting all the nodes in a graph in a

particular manner, updating and/or checking their values along the way. The

order in which the vertices are visited may be important, and may depend upon

the particular algorithm.

The two common traversals:

• Breadth-first search

• Depth-first search

Breadth-first search

• Breadth-first search (BFS) is a graph search algorithm that begins at the

root node and explores all the neighbouring nodes. Then for each of those

nearest nodes, the algorithm explores their unexplored neighbour nodes,

and so on, until it finds the goal.

• A breadth-first search (BFS) explores nodes nearest the root before

exploring nodes further away.

Procedure BFS(v)

 VISITED(v) 1

 Initialize Q with vertex v in it

 while Q not empty do

 call DELETEQ(v, Q)

 for all vertices w adjacent to v do

 if VISITED(w) = 0

 then [call ADDQ(w, Q); VISITED(w) 1]

 end

 end

end

Example

As in the example given above, BFS algorithm traverses from A to B to E to F

first then to C and G lastly to D. It employs the following rules.

• Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display

it. Insert it in a queue.

• Rule 2 − If no adjacent vertex is found, remove the first vertex from the

queue.

• Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty.

Step Traversal Description

1

Initialize the queue.

2

We start from

visiting S (starting node),

and mark it as visited.

3

We then see an unvisited

adjacent node from S. In

this example, we have three

nodes but alphabetically we

choose A, mark it as visited

and enqueue it.

4

Next, the unvisited adjacent

node from S is B. We mark

it as visited and enqueue it.

5

Next, the unvisited adjacent

node from S is C. We mark

it as visited and enqueue it.

6

Now, S is left with no

unvisited adjacent nodes.

So, we dequeue and find A.

7

From A we have D as

unvisited adjacent node. We

mark it as visited and

enqueue it.

At this stage, we are left with no unmarked (unvisited) nodes. But as per the

algorithm we keep on dequeuing in order to get all unvisited nodes. When the

queue gets emptied, the program is over.

 Running time of BFS is O(n2).

Applications of Breadth-First Search Algorithm

Breadth-first search can be used to solve many problems such as:

• Finding all connected components in a graph G.

• Finding all nodes within an individual connected component.

• Finding the shortest path between two nodes, u and v, of an unweighted

graph.

• Finding the shortest path between two nodes, u and v, of a weighted

graph.

Depth First Search

 Depth First Search (DFS) algorithm traverses a graph in a depthward

motion and uses a stack to remember to get the next vertex to start a search,

when a dead end occurs in any iteration.

Procedure DFS (v)

 VISITED (v) 1

 for each vertex w adjacent to v do

 if VISITED(w) = 0 then call DFS(w)

 end

end

 Running time is O(n2)

Example

 As in the example given above, DFS algorithm traverses from S to A to

D to G to E to B first, then to F and lastly to C. It employs the following rules.

• Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display

it. Push it in a stack.

• Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack.

(It will pop up all the vertices from the stack, which do not have adjacent

vertices.)

• Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

Step Traversal Description

1

Initialize the stack.

2

Mark S as visited and put it

onto the stack. Explore any

unvisited adjacent node

from S. We have three nodes

and we can pick any of them.

For this example, we shall

take the node in an

alphabetical order.

3

Mark A as visited and put it

onto the stack. Explore any

unvisited adjacent node from

A. Both S and D are adjacent

to A but we are concerned for

unvisited nodes only.

4

Visit D and mark it as visited

and put onto the stack. Here,

we have B and C nodes,

which are adjacent to D and

both are unvisited. However,

we shall again choose in an

alphabetical order.

5

We choose B, mark it as

visited and put onto the stack.

Here B does not have any

unvisited adjacent node. So,

we pop B from the stack.

6

We check the stack top for

return to the previous node

and check if it has any

unvisited nodes. Here, we

find D to be on the top of the

stack.

7

Only unvisited adjacent node

is from D is C now. So we

visit C, mark it as visited and

put it onto the stack.

As C does not have any unvisited adjacent node so we keep popping the stack

until we find a node that has an unvisited adjacent node. In this case, there's

none and we keep popping until the stack is empty.

Applications of Depth-First Search Algorithm

Depth-first search is useful for:

• Finding a path between two specified nodes, u and v, of an unweighted

graph.

• Finding a path between two specified nodes, u and v, of a weighted

graph.

• Finding whether a graph is connected or not.

• Computing the spanning tree of a connected graph.

Connected Components

o If G is an undirected graph, then one can determine whether or not it is

connected by simply making a call to either DFS or BFS and then

determining if there is any unvisited vertex.

o O(n2) If adjacency matrices are used and O(e) if adjacency lists are used.

o Algorithm COMP which determines all the connected components of G.

o The algorithm uses DFS.

Procedure COMP (G, n)

 for i 1 to n do

 VISITED (i) 0

 end

 for i 1 to n do

 if VISITED (i) 0 then [call DFS(i); output all newly visited

vertices together with all edges incident to them]

 end

end COMP

o if G is represented by its adjacency lists, then the total time taken by DFS

is O(e). The output can be completed in time O(e) if DFS keeps a list of all

newly visited vertices.

o The total time to generate all the connected components is O (n+e).

Spanning Tree

 A spanning tree is a subset of Graph G, which has all the vertices covered

with minimum number of edges. Hence, a spanning tree does not have

cycles and it cannot be disconnected.

 The spanning tree resulting from a call to DFS is known as a depth first

spanning tree. When BFS is used, the resulting spanning tree is called as

breadth first spanning tree.

Minimum Spanning Tree (MST)

 In a weighted graph, a minimum spanning tree is a spanning tree that has

minimum weight than all other spanning trees of the same graph. In real-world

situations, this weight can be measured as distance, congestion, traffic load or

any arbitrary value denoted to the edges.

Kruskal’s Algorithm

 Kruskal's algorithm to find the minimum cost spanning tree uses the

greedy approach. This algorithm treats the graph as a forest and every node it

has as an individual tree. A tree connects to another only and only if, it has the

least cost among all available options and does not violate MST properties.

T 0

while T contains less than n-1 edges do

 choose an edge (v,w) from E of lowest cost;

 delete (v,w) from E;

 if(v,w) does not create a cycle in T

 then add(v,w) to T

 else discard(v,w)

end

Example

Step 1 - Remove all loops and Parallel Edges

Remove all loops and parallel edges from the given graph.

In case of parallel edges, keep the one which has the least cost associated and

remove all others.

Step 2 - Arrange all edges in their increasing order of weight

The next step is to create a set of edges and weight, and arrange them in an

ascending order of weightage (cost).

Step 3 - Add the edge which has the least weightage

Now we start adding edges to the graph beginning from the one which has the

least weight. Throughout, we shall keep checking that the spanning properties

remain intact. In case, by adding one edge, the spanning tree property does not

hold then we shall consider not to include the edge in the graph.

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding

them does not violate spanning tree properties, so we continue to our next edge

selection.

Next cost is 3, and associated edges are A,C and C,D. We add them again −

Next cost in the table is 4, and we observe that adding it will create a circuit in

the graph. −

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

We observe that edges with cost 5 and 6 also create circuits. We ignore them

and move on.

Now we are left with only one node to be added. Between the two least cost

edges available 7 and 8, we shall add the edge with cost 7.

By adding edge S, A. We have included all the nodes of the graph and we now

have minimum cost spanning tree.

All Pairs Shortest Paths

• The all pair shortest path algorithm is also known as Floyd-Warshall

algorithm is used to find all pair shortest path problem from a given

weighted graph.

• As a result of this algorithm, it will generate a matrix, which will

represent the minimum distance from any node to all other nodes in the

graph.

• At first the output matrix is same as given cost matrix of the graph. After

that the output matrix will be updated with all vertices k as the

intermediate vertex.

• The time complexity of this algorithm is O(V3), here V is the number of

vertices in the graph.

• The graph G is represented by its cost adjacency matrix with COSt(i,i)=0

and COST(i,j)=+∞ in case edge <i, j>, i≠j is not in G

• Ak(i,j) to be the cost of the shortest path from i to j going through no

intermediate vertex of index greater than k.

• All pairs shortest algorithm is to successively generate the matrices A0,

A1, A2,..., An.

• To generate Ak by realizing that for any pair of vertices i, j either

1. The shortest paths from i to j going through no vertex with index

greater than k does not go through the vertex with index k and so

its cost is Ak-1(i,j)

Ak(i,j) = min{Ak-1(i,j), Ak-1(i,k)+Ak-1(k,j)}, k≥1 and

A0(i,j)= COST(i,j)

Procedure ALL_COSTS(COST, A, n)

for i := 1 to n, do

 for j := 1 to n, do

 A(i,j) COST(i,j)

 end

end

for k := 1 to n, do

 for i := 1 to n, do

 for j := 1 to n, do

A(i,j) = min{A(i,j), A(i,k)+A(k,j)}

end

 end

end

Example

A0 1 2 3 A1 1 2 3

1 0 4 11 1 0 4 11

2 6 0 2 2 6 0 2

3 3 0 3 3 7 0

A2 1 2 3 A3 1 2 3

1 0 4 6 1 0 4 6

2 6 0 2 2 5 0 2

3 3 7 0 3 3 7 0

Transitive Closure

• A problem related to the all pairs shortest path problem is that of

determining for every pair of vertices i,j in G the existence of a path

from i to j.

• Two cases are of interest, one when all path lengths (i.e., the number of

edges on the path) are required to be positive and the other when path

lengths are to be nonnegative.

• If A is the adjacency matrix of G, then the matrix A+ having the

property A+ (i,j) = 1 if there is a path of length > 0 from i to j and 0

otherwise is called the transitive closure matrix of G.

• The matrix A* with the property A* (i,j) = 1 if there is a path of length 0

from i to j and 0 otherwise is the reflexive transitive closure matrix of G.

 Graph G and Its Adjacency Matrix A, A+ and A*

• The only difference between A* and A+ is in the terms on the

diagonal. A+(i,i) = 1 iff there a cycle of length > 1 containing

vertex i while A*(i,i) is always one as there is a path of length 0 from i to i.

• If we use algorithm ALL_COSTS with COST(i,j) = 1 if <i,j> is an edge

in G and COST(i,j) = + if <i,j> is not in G, then we can easily obtain A+ from

the final matrix A by letting A+ (i,j) = 1 iff A (i,j) < + . A* can be obtained

from A+ by setting all diagonal elements equal 1.

Single Source All Destinations

• In a Single Source Shortest Paths Problem, we are given a Graph G =

(V, E), we want to find the shortest path from a given source vertex s ∈ V

to every vertex v ∈ V.

• Let S denote the set of vertices (including vo) to which the shortest paths

have already been found. For w not in S, let DIST(w) be the length of the

shortest path starting from vo going through only those vertices which are

in S and ending at w.

• If the next shortest path is to vertex u, then the path begins at vo, ends

at u and goes through only those vertices which are in S.

• The destination of the next path generated must be that vertex u which

has the minimum distance, DIST(u), among all vertices not in S.

• Having selected a vertex u as in (ii) and generated the

shortest vo to u path, vertex u becomes a member of S. At this point the

length of the shortest paths starting at vo, going through vertices only

in S and ending at a vertex w not in S

• a path from vo to u to w where the path from vo to u is the shortest such

path and the path from u to w is the edge <u,w>. The length of this path is

DIST(u) + length (<u,w>)

procedure SHORTEST-PATH (v,COST,DIST,n)

declare S (1: n)

1 for i 1 to n do //initialize set S to empty//

2 S(i) 0; DIST(i) COST(v,i)

3 end

4 S(v) 1; DIST(v) 0; num 2 //put vertex v in set

S//

5 while num < n do //determine n - 1 paths from vertex v//

6 choose u: DIST(u) = min {DIST(w)}

S(w)=0

7 S(u) 1; num num + 1 //put vertex u in set S//

8 for all w with S(w) = 0 do //update distances//

9 DIST(w) min {DIST(w),DIST(u) + COST(u,w)}

10 end

11 end

12 end SHORTEST-PATH

Example

Figure (a)

Figure (b) Cost Adjacency Matrix for Figure (a).
 Vertex LA SF D C B NY M NO

Iteration S Selected (1) (2) (3) (4) (5) (6) (7) (8)

Initial -- + + + 1500 0 250 + +

1 5 6 + + + 1250 0 250 1150 1650

2 5,6 7 + + + 1250 0 250 1150 1650

3 5,6,7 4 + + 2450 1250 0 250 1150 1650

4 5,6,7,4 8 3350 + 2450 1250 0 250 1150 1650

5 5,6,7,4,8 3 3350 3250 2450 1250 0 250 1150 1650

6 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650

 5,6,7,4,8,3,2

Action of SHORTEST_PATH

