
OPEN SOURCE TECHNOLOGIES

REFERENCE :

“OPEN SOURCE DEVELOPMENT WITH LAMP – Using Linux, Apache, MY SQL, Perl and PHP”, Pearson Education, 2009.

JAMES LEE & BRENT LEE

UNIT - 2

 APACHE WEB SERVER
INTRODUCTION
The web pages that is seen when the Web is surfed are served up via the HyperText Transfer Protocol (HTTP) by an httpd daemon—the "d" at the end means daemon, programs that are always running in the background. In some distributions, the daemon is called apache instead of httpd. Apache is the web server.
Apache originated as an indirect offshoot of the National Center for Supercomputing Applications (NCSA) at the University of Illinois Urbana-Champaign (UIUC). The Open Source applications most of us use today, Netscape and Mozilla and Apache, originated from NCSA in one way or another. The NCSA webserver was widely used, but eventually NCSA stopped supporting it. Many people began creating patches to add functionality and fix bugs (it was Open Source, after all). Eventually, developers decided to make it a full-blown non-NCSA project called Apache because it was based on "a patchy" bit of code.
APACHE EXPLAINED
The following figure depicts what happens when a user requests a web page from the Apache webserver.

[image: image1.emf][image: image2.emf]

The webserver recognizes an HTTP request by the URL of the thing requested or by the filename extension. For instance, if the URL www.example.com/content/chapter1/ were loaded into a browser, the webserver contacted (www.example.com)would receive a request that might look like this:

GET /content/chapter1/ HTTP/1.0

 This example demonstrates the simpler HTTP protocol version 1.0. It is more likely that the version used will be 1.1, but 1.0 still works.
The server determines that the thing requested is underneath the document root, a directory (/var/www/html) where the HTML files reside. The text /content/chapter1/ directs Apache to navigate to those directories underneath the document root and grab the HTML file named index.html.

The result is that the server grabs the file /var/www/html /content/ chapter1/index.html, which is simply a text file. It then takes the content of this file and prepends an important piece of information called the header. The header tells the client how to interpret the information that is to follow.

For an HTML file, the header tells the client that what follows is text, which is to be interpreted as HTML code. The header is separated from the content that follows by a blank line. Of course, webservers can dish up more than HTML these days: music, streaming video, PDF, etc. It's an instructive exercise to view the header, blank line, and body that the server serves up, and this can be achieved without using a browser.

STARTING, STOPPING, AND RESTARTING APACHE
If we installed Linux, Apache should be running when we start our machine. To check, this URL is loaded in the browser:

http://localhost/
We should see the Apache welcome page, as shown in the following figure. If not, Apache may not be running. It is not a major crisis—in fact, it's a good thing if daemons such as Apache don't run unless we explicitly start them. If Apache has been running since we booted and plugged in the TCP/IP connection, other services are probably running, and we should configure them as we wish, firewall them, or turn them off.

 [image: image3.emf]
To check whether Apache is running, the following is tried:

ps ax | grep httpd

Although the program is called Apache, the daemon's name is httpd on Red Hat, apache on some others. We should see something like this:

1922 ? S 0:00 /usr/sbin/httpd

1927 ? S 0:00 /usr/sbin/httpd

1928 ? S 0:00 /usr/sbin/httpd

1929 ? S 0:00 /usr/sbin/httpd

1930 ? S 0:00 /usr/sbin/httpd

1932 ? S 0:00 /usr/sbin/httpd

1933 ? S 0:00 /usr/sbin/httpd

1935 ? S 0:00 /usr/sbin/httpd

1937 ? S 0:00 /usr/sbin/httpd

Several copies of the server are running, so Apache can process more than one request at a time. If we don't see a number of httpd PIDs, we should start the server as follows:

/etc/init.d/httpd start

We can check the status of our server by executing the following command:
/etc/init.d/httpd status

The output of this command is as follows:

httpd (pid 1937 1935 1933 1932 1930

1929 1928 1927 1922) is running...

If we didn't get this sort of result, or we got an error message, we should review the logs in /var/log/httpd for error messages, specifically error_log, and should read the man page (man httpd, not man apache).
If httpd is running, and we didn't see the welcome page when we loaded http://localhost/, we have a problem. First, we should try to restart it. There are several ways to do this—the easiest is to use the provided start-up script:

/etc/init.d/httpd stop

/etc/init.d/httpd start

Also good to know is this:

/etc/init.d/httpd help

The option help is not a defined option, but if we pass an invalid option to /etc/init.d/httpd, it will tell all the valid ones.

We can also do this—it sends the USR1 signal to all occurrences of httpd, making the daemon reload the configuration file:
/etc/init.d/httpd graceful
 (OR)
killall -USR1 httpd

Killall may not be installed on our system. If it isn't, we should consider finding it and installing it. It saves the step of finding the process ID and passing that to the kill command. The parameter USR1 (man kill and man signal) is the graceful way to reload a process—it allows the process and its children to exit after serving existing requests before starting again. If all else fails, we can use kill -9.

The gentlest way to restart apache is to use the graceful option to the start-up script. Therefore, when we need to restart the server, we will execute the following command:

/etc/init.d/httpd graceful

If all this doesn't work, we may need to adopt sterner measures. We should see the Apache documents at httpd.apache.org/docs/. Another excellent way to figure out how to fix errors, or to find a support group to commiserate with, is to paste the error (enclosed in quotes) into Google or Google's group interface.

Once we have Apache running, we should make sure it starts at boot. Execute chkconfig:

chkconfig --list httpd

httpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

If we do not see output indicating that 3, 4, and 5 are on, we should turn them on:

chkconfig httpd on

chkconfig --list httpd

httpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

Next time we reboot the machine, we should check that httpd starts with ps or /etc/init.d/httpd status.

CONFIGURATION
MODIFYING THE DEFAULT CONFIGURATION
Apache's configuration file is /etc/httpd/conf/httpd.conf. There are many comments in httpd.conf.
First, change the following:

ServerAdmin root@webserver.example.com

to:

ServerAdmin webmaster@example.com
or whoever we want to get all the comments.

Apache logs every hit to the webserver. Some of the information that can be written to the log includes the following:

1) The client (Web surfer) IP address

2) The date
3) The URI requested (all the stuff after www.example.com/)

4) The referrer - the web page the client was at when they clicked the link to take them to our web page

5) The user agent (the browser the client is using)

There are various predefined CustomLog options, logging more or less information. The default logged in /var/log/httpd/ includes some of this information (the client IP address, the date, and a few others). For more information, the following format is used.
CustomLog /var/log/httpd/logs/access_log common

to:

CustomLog /var/log/httpd/logs/access_log combined

Other options include

CustomLog /var/log/httpd/logs/access_log agent

CustomLog /var/log/httpd/logs/access_log referrer
SECURING APACHE WEB SERVER

Set User And Group
We should make sure the user and group are set to:

User apache

Group apache

The user and group could be apache or bozo or whatever. The important thing is that Apache doesn't run as root, which, if Apache were cracked, could allow someone to crack the box from the root Apache account.

Remove Online Manuals
If the default Red Hat is installed, the Apache manuals were installed in the html directory /var/www/html/manual/, which can be accessed via file:///var/www/html/manual/ or http://localhost/manual.
If these are left on the machine, a cracker could gain information about the machine and installation (such as the server version) by simply hitting this directory. So the manuals are moved to someplace out of the web path:

mv /var/www/html/manual /usr/doc/apache-1.3.24/

Consider Allowing Access to Local Documentation
Red Hat defines the following by default:

Alias /doc/ /usr/share/doc/

<Location /doc>

order deny,allow

deny from all

allow from localhost .localdomain

Options Indexes FollowSymLinks

</Location>
This directive allows access to the local documentation in /usr/share/doc.
Don't Allow Public_Html Web Sites (Unless You Want To)
The mod_user module allows users to serve Web content without having access to the main web directory tree. For example, the use xyz could create a directory called public_html in his home directory, which would be available at the URL http://servername/~xyz/.

We may want to consider whether to allow users to create these public_html sites. Nothing is inherently wrong with allowing public_html, but it should be something we decide to allow rather than just letting it happen by default. Quite a few directives are involved in the configuration of this feature, but if we locate the line:

UserDir public_html

and modify it as follows:

 UserDir disabled

this feature is turned off.

.htaccess
We can allow access control of individual directories with the following configuration module:

AccessFileName .htaccess

<Files ~ "^\.ht">

Order allow,deny

Deny from all

</Files>

The AccessFileName directive defines the name of the file Apache looks at to determine whether the client can view our web page or other parts of our site. The Files directive says that files beginning with .ht can't be seen by anyone even if they type the filename into their browser. Order and Deny determine how access is controlled.
Remove server-status and server-info

The following directives allow clients to find out information about our machine and server.

#<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from .your_domain.com

#</Location>
and this:

#<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from .your_domain.com

#</Location>

Disallow Symbolic Links

Allowing symbolic links from within our webserver document tree to other directories can cause content control problems. It is suggested that not to allow symbolic links.

To disallow symbolic links, be sure that the Options directives do not include FollowSymLinks.
Do Not Allow Directory Indexes

If we add Indexes to the Options directive, clients can access directory listings if they type in a directory with no index.html. This generally has a drawback because it lets people look at the directory structure, perhaps to see files that we didn't want served up—.htaccess files, old versions, backups. It is better to let them to see only the files that we decided to serve up via the web page. We should be sure that Indexes is not part of our Options directive.

Don't Be a Proxy Server Unless You Want to Be

If we don't want to be a proxy server, we should make sure the following sections are commented out:

#LoadModule proxy_module modules/libproxy.so

and:

#AddModule mod_proxy.c

and:

#<IfModule mod_proxy.c>

#ProxyRequests On

#

#<Directory proxy:*>

Order deny,allow

Deny from all

Allow from .your_domain.com

#</Directory>

#

Enable/disable the handling of HTTP/1.1 "Via:" headers.

("Full" adds the server version; "Block" removes

all outgoing Via: headers)

Set to one of: Off | On | Full | Block

#

#ProxyVia On

#

To enable the cache as well, edit and uncomment

the following lines:

(no caching without CacheRoot)

#

#CacheRoot "/var/cache/httpd"

#CacheSize 5

#CacheGcInterval 4

#CacheMaxExpire 24

#CacheLastModifiedFactor 0.1

#CacheDefaultExpire 1

#NoCache a_domain.com another_domain.edu

 joes.garage_sale.com

#</IfModule>

Disable CGI Programs

Disable any CGI scripts that were shipped with Apache, as follows:

chmod -x /var/www/cgi-bin/*

Better yet, remove them:

rm -rf /var/www/cgi-bin/*

And don't download CGI scripts from the Web. Whether they are malicious or simply badly written, CGI scripts are an excellent way to get our system cracked.

Reload the Configuration File

Now Apache is secured and the configuration file is reloaded as follows:

/etc/init.d/httpd graceful
CREATE THE WEB SITE

We can build an example website on our machine.

Downloading the Examples

If the user wants to download all the examples, it can be done from www.opensourcewebbook.com/ sourcecode/. The instructions are followed on how to obtain a username/password. The password is needed to download the source and view all the examples. Once the user is ready, the link for source.tar.gz is clicked and the username/password is entered. The tarball in a convenient place, say in /tmp is saved. Now, as root, the user can execute the following commands:

mv /var/www /var/www.old

mkdir /var/www

chown jrl /var/www

cd /var/www

tar xzvf /tmp/source.tar.gz

find . -exec chown jrl { }\;

First, the web site that came with Red Hat is moved to /var/www.old. Then, a new directory is made for the downloaded source, and this new directory is modified to be owned by jrl (select a user that is created on our machine in place of userjr, l). Then, the source is untarred in the new directory. And finally, all files in the new directory are changed to be owned by jrl (again, select an appropriate user on our machine).

Now, the new web site is ready. To check whether everything worked, http://localhost/ is typed in the browser and executed. It should resemble www.opensourcewebbook.com/, which is shown in following figure.
[image: image4.emf][image: image5.emf]

When the location http://www.localhost/ is loaded in the browser, the server will locate a file named index.html in the document root (remember, that is the directory under which all the HTML files are found; in this case, /var/www/html). This default name, index.html, is configurable in the Apache configuration file (see the DirectoryIndex directive in httpd.conf). Therefore, the file requested is /var/www/html/index.html, and if we look at that file's contents, we will see the HTML that makes the above figure.

Creating Them Yourself

If we choose not to download all the examples and would rather create each example, we can either type them all in or download them from the website one at a time. When it is time to experiment, we can download the example from there, save it into the appropriate directory, and experiment with it at that time. If we are going this route, let's start with a simple example. First, create an HTML file in /var/www/html/index.html. Place the following text in index.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

 Transitional//EN" "http://www.w3.org/TR/

 REC-html40/loose.dtd ">

<html>

<head>

</head>

<body>

hello, world

</body>

</html>

Set the permissions so that we can write to the file and the rest of the world can read it; if the file and directory are not world readable, others won't have permission to view the page in their browser. It's a good idea to view our web pages from a different machine (and using different browsers) to catch this sort of error.

$ chmod a+r /var/www/html/index.html

The first two lines of our example, starting with <!DOCTYPE and continuing to .dtd">, contain the doctype, which is required for the page to pass strict HTML muster. This page does. Reload the browser (Shift-Reload in Netscape and Mozilla to clear the cache and reload from scratch) with http://localhost/. The following figure is seen as a result.
[image: image6.emf]

Now, we will go to www.opensourcewebbook.com/. The above figure is shown there. View the document source for this file by selecting View Page Source (or something similar) from one of the menus in our browser (some browsers allow us to do the same using the right mouse button). Copy the entire source to /var/www/html/index.html. Reloading http://localhost/ should display a page similar to www.opensourcewebbook.com/ figure.

Creating web pages is as simple as creating directories and .html files.

Apache Log Files

Apache keeps detailed logs of accesses to our website, errors, and more. The Apache logs are located at /var/log/httpd/access_log and /var/log/httpd/error_log. These locations are configurable in httpd.conf. We should have a log monitor program running, such as swatch or logwatch, to maintain these files for security violations and problems.

Of course, the most important use of the logs is to look at them when there is a problem to figure out what went wrong. An access_log entry might look like this:

192.168.1.12 - - [21/May/2001:14:10:05 -0600]

 "GET / HTTP/1.0" 200 43

"http://www.onsight.com/" "Mozilla/4.77 [en]

(X11; U; Linux 2.4.2-2 i686; Nav)"

Most of these entries should be clear: the IP address of the requestor, the date and time of the request, the browser and some system details of the requestor. "GET / HTTP/1.0" 200 43 means an HTTP request, no errors (200), and 43 bytes were sent. (A list of errors can be found at www.ietf.org/rfc/rfc2616.txt.)
Access Control with .htaccess

This is useful for restricting access to certain portions of our website, either by allowing access only from specific IP addresses or domains or by password control.

In httpd.conf, look for the line Directory /var/www/html (or whatever the default directory is). There we will see:

AllowOverride None

Change this to:

AllowOverride AuthConfig

This change tells the server to change its behavior from allowing anyone to connect to allowing only those clients whose attributes match those in an authorization file to connect to the files in that directory. Make sure the .htaccess filename definition is uncommented. We could change the name of the .htaccess file via this directive:

AccessFileName .htaccess

Since we use the file .htaccess to control access, make sure the .htaccess directive is uncommented. It denies serving any file whose name begins with .ht, meaning that clients can't look at our .htaccess file to figure out what that file is and who we allow to look at this directory. Now restart the server:

/etc/init.d/httpd graceful

To see how .htaccess works, create a directory for some private information:

$ cd /var/www/html

$ mkdir private

$ chmod a+rx private

$ cd private

And create a simple index.html file (remember to make it readable with chmod a+r index.html):

<html>

<head>

<title>

My Private Directory

</title>

</head>

<body>

Congratulations! You now have access to my private directory!

</body>

</html>

Now, create a password file. It's convenient and tempting to put it in the same directory and name it something like .htpasswd. Don't place it outside the document tree. If someone were to get access to this directory, because of a server misconfiguration , we wouldn't want them to have access to our password files (even though the passwords are encrypted), especially because many people tend to use the same passwords for many different purposes.

$ mkdir /var/www/misc

$ chmod a+rx /var/www/misc

$ cd /var/www/misc

Create a password file:

$ htpasswd -bc private.passwords neo anderson

(Adding password for user neo)

The option -b means we are supplying the password (anderson) on the command line, and -c means create the file. To add new users, leave off the
-c.

$ htpasswd -b private.passwords morpheus sleeps

Create the .htaccess file in the /private directory. This is not the password file but the file that points to the passwords.

$ cd /var/www/html/private

$ vi .htaccess

The file .htaccess has this in it:

AuthName "My Private Area"

AuthType Basic

AuthUserFile /var/www/misc/private.passwords

AuthGroupFile /dev/null

So when we point our browser to http://localhost/private/ or www.opensourcewebbook.com/private, we should see the following figure.

[image: image7.emf]
[image: image8.emf]
To get in, enter the username/password neo/anderson, as shown in following figure.
[image: image9.emf][image: image10.emf]
The result is shown in the following figure.
[image: image11.emf]

There's no encryption when we use passwords like this—the passwords go over the network in the clear (to be exact, the passwords are

encoded, then sent in the clear, but the encoded passwords are easily decoded if a cracker knows how to decode them, and they do know how to decode them), which as we might imagine, is not an optimal configuration. Be aware that doing so makes us vulnerable to password sniffing. If we do use this, don’t use the same password as our Linux login, and be aware of vulnerabilities. We can monitor access to these directories with our log monitoring program if we desire. We can also do simple IP verification by putting the following in our .htaccess file:

Order deny,allow

Deny from all

Allow from 192.168.1.100

Allow from 10.0.1.0

Allow from 127.0.0.1

In the preceding example, the first two IP addresses are special local networks. Although most IP addresses are assigned by ICANN and distributed by DNS, the 192.168 and 10.0 IP subnets are not unique and are used for internal networks behind a firewall. The third IP address, 127.0.0.1, is a special IP address, that of localhost. Everyone's computer assigns this IP to itself, in addition to any external IP address. If we point our web browser to localhost or 127.0.0.1, it will serve up the default page of the local Apache host. We can combine passwords and IP verification for additional security.

