OPEN SOURCE TECHNOLOGIES

REFERENCE : 



“OPEN SOURCE DEVELOPMENT WITH LAMP – Using Linux, Apache, MY SQL, Perl and PHP”, Pearson Education, 2009.

JAMES  LEE  & BRENT LEE 





     UNIT – 3 




     MY-SQL
INTRODUCTION
Many of the applications that a Web developer wants to use can be made easier by the use of a standardized database to store, organize, and access information. MySQL is an Open Source Standard Query Language (SQL) database that is fast, reliable, easy to use, and suitable for applications of any size.
TUTORIAL
A few SQL commands facilitate learning MySQL.
To illustrate these, a simple database containing information about some people is created.


First, a connection is made to the MySQL server as the root MySQL user: 



  $ mysql -u root

If the following output is displayed,

ERROR 2002: Can't connect to local MySQL server through 

socket ´/var/lib/mysql/mysql.sock´(2)

it means the MySQL server is not running. 

chkconfig is used as root to make sure it starts the next time the machine boots, and then it is started by hand as follows:



# chkconfig mysqld on




# /etc/init.d/mysqld start

Now it will be able to connect 
$ mysql -u root.

 If not, the MySQL log file at /var/log/mysqld.log is seen for errors. If so, a welcome message and the MySQL prompt is displayed:

   Welcome to the MySQL monitor. Commands end with ; or \g.


   Your MySQL connection id is 3 to server version: 3.23.36


   Type ´help;´ or ´\h´ for help. Type ´\c´ to clear the buffer mysql>


If help; command is entered at the prompt, a list of MySQL commands will be displayed. These are used to work with the MySQL server. Enter status; to see the status of the server.

The SHOW DATABASES and CREATE DATABASE Commands


The CREATE DATABASE command is used to create a new database. Before creating a database, the current databases are checked to make sure a database of that name doesn’t exist already. For this, the SHOW DATABASES command, which displays the list of the databases that already exists, is used.


mysql> SHOW DATABASES;



--------------



 Database 



--------------



 mysql 



 test 



--------------


2 rows in set (0.00 sec)


mysql> CREATE DATABASE people;




Query OK, 1 row affected (0.00 sec)



mysql> SHOW DATABASES;



--------------



 Database 



--------------




 mysql 



 people




 test 



--------------


3 rows in set (0.00 sec)

SQL commands and subcommands (CREATE is a command; DATABASE is its subcommand) are case-insensitive. The name of the database (and table and field) are case sensitive. The SQL commands are distinguished by uppercase.

The USE Command


Before anything can be done with the newly created database, MySQL has to connect to it. That's done with the USE command:



mysql> USE people;
The CREATE TABLE and SHOW TABLES Commands


Each table within the database must be defined and created. This is done with the CREATE TABLE command.


A table named age_information to contain an individual's first name, last name, and age is created. MySQL needs to know what kind of data can be stored in these fields. In this case, the first name and the last name are character strings of up to 20 characters each, and the age is an integer:


mysql> CREATE TABLE age_information 


  
   (lastname CHAR(20),



   
   firstname CHAR(20),



   
   age INT);

Query OK, 0 rows affected (0.00 sec)



mysql> SHOW TABLES



-----------------------



 age_information



-----------------------


It appears that the table was created properly. This can be checked by executing the SHOW TABLES command. If an error is made, the table can be removed with DROP TABLE. When a database in MySQL is created, a directory is created with the same name as the database.



# ls -l /var/lib/mysql


drwx------ 2 mysql mysql 1024 Dec 12 15:28 mysql


srwxrwxrwx 1 mysql mysql 0 Dec 13 07:19 mysql.sock


drwx------ 2 mysql mysql 1024 Dec 12 15:28 test

drwx------ 2 mysql mysql 1024 Dec 13 07:24 people

Within that directory, each table is implemented with three files:



# ls -l /var/lib/mysql/people


-rw-rw---- 1 mysql mysql 8618 Dec 13 07:24 age_information.frm


-rw-rw---- 1 mysql mysql 0 Dec 13 07:24 age_information.MYD


-rw-rw---- 1 mysql mysql 1024 Dec 13 07:24 age_information.MYI


The table age_information shows two MySQL datatypes: character strings and integers. 

Other MySQL data types include several types of integers and floating points:

INTEGERS

    TINYINT -128 to 127 (signed) or 0 to 255 (unsigned)

    SMALLINT -32768 to 32767 (signed) or 0 to 65535 (unsigned)

   MEDIUMINT -8388608 to 8388607 (signed) or 0 to 16777215 










(unsigned)

    INTEGER (same as INT) -2147483648 to 2147483647 (signed) or 0 to 








 4294967295 (unsigned)

    BIGINT -9223372036854775808 to 9223372036854775807 (signed) or 0 




         to 18446744073709551615 (unsigned)
FLOATING POINTS



FLOAT



DOUBLE



REAL (same as DOUBLE)



DECIMAL



NUMERIC (same as DECIMAL)

There are several data types to represent a date:


DATE YYYY-MM-DD



DATETIME YYYY-MM-DD HH:MM:SS



TIMESTAMP YYYYMMDDHHMMSS or 







    YYMMDDHHMMSS or 



  
    YYYYMMDD or 




    YYMMDD



TIME HH:MM:SS



YEAR YYYY or YY

The table age_information used the CHAR character data type. The following are the other character data types. 

Several have BLOB in their name— a BLOB is a Binary Large OBject that can hold a variable amount of data. The types with TEXT in their name are just like their corresponding BLOBs except when matching is involved: The BLOBs are case-sensitive, and the TEXTs are case-insensitive.
VARCHAR variable-length string up to 255 characters


TINYBLOB


TINYTEXT
maximum length 255 characters


BLOB


TEXT

maximum length 65535 characters


MEDIUMBLOB


MEDIUMTEXT

maximum length 16777215 characters


LONGBLOB


LONGTEXT

maximum length 4294967295 characters

The DESCRIBE Command


The DESCRIBE command gives information about the fields in a table.


mysql> DESCRIBE age_information;



--------------------------------------------------------
 

 | Field | Type | Null | Key | Default | Extra |



--------------------------------------------------------


 | lastname | char(20) | YES | | NULL | |



 | firstname | char(20) | YES | | NULL | |



 | age | int(11) | YES | | NULL | |



---------------------------------------------------------
3 rows in set (0.00 sec)


The command SHOW COLUMNS FROM age_information; gives the same information as DESCRIBE age_information.

The INSERT Command

The INSERT command is used to add information into a table.
       mysql> INSERT INTO age_information 
 

(lastname, firstname, age)



VALUES (´Wall´, ´Larry´, 46);

Query OK, 1 row affected (0.00 sec)


The syntax of the command is INSERT INTO, followed by the table in which to insert, a list within parentheses of the fields into which  information is to be inserted, and the qualifier VALUES followed by the list of values in parentheses in the same order as the respective fields.

The SELECT Command


SELECT selects records from the database. When this command is executed from the command line, MySQL prints all the records that match the query. 

  mysql> SELECT * FROM age_information;



-------------------------------------


 | lastname | firstname | age |



-------------------------------------
 

 | Wall | Larry | 46 |



-------------------------------------

1 row in set (0.00 sec)


The * means "show values for all fields in the table"; FROM specifies the table from which to extract the information. The previous output shows that the record for Larry Wall was added successfully. 
Some more records are added to use SELECT command in different ways.

     mysql> INSERT INTO age_information 


        (lastname, firstname, age)


        VALUES (´Torvalds´, ´Linus´, 31);

Query OK, 1 row affected (0.00 sec)


    mysql> INSERT INTO age_information


       (lastname, firstname, age)


                 VALUES (´Raymond´, ´Eric´, 40);

Query OK, 1 row affected (0.00 sec)



mysql> SELECT * FROM age_information;



-------------------------------------


 | lastname | firstname | age |



-------------------------------------


 | Wall | Larry | 46 |



 | Torvalds | Linus | 31 |



 | Raymond | Eric | 40 |



-------------------------------------

3 rows in set (0.00 sec)

To sort the table based on lastname:
     mysql> SELECT * FROM age_information ORDER BY lastname;


-------------------------------------



 | lastname | firstname | age |



-------------------------------------


 | Raymond | Eric | 40 |



 | Torvalds | Linus | 31 |



 | Wall | Larry | 46 |



-------------------------------------

3 rows in set (0.00 sec)

To show only the lastname field, sorted by lastname:
 mysql> SELECT lastname FROM age_information ORDER BY lastname;


------------------


 | lastname |



------------------


 | Raymond |



 | Torvalds |



 | Wall |



------------------

3 rows in set (0.00 sec)
To show the ages in descending order:

mysql> SELECT age FROM age_information ORDER BY age DESC;



--------



 | age |




--------



 | 46 |




 | 40 |




 | 31 |




--------


3 rows in set(0.00 sec)
To show all the last names for those who are older than 35:

mysql> SELECT lastname FROM age_information WHERE age > 35;

------------------

 | lastname |


------------------

 | Wall |


 | Raymond |


------------------

2 rows in set (0.00 sec)

 To show all the last names for those who are older than 35, but sort by lastname:


mysql> SELECT lastname FROM age_information



   WHERE age > 35 ORDER BY lastname;

------------------

 | lastname |


------------------

 | Raymond |


 | Wall |


------------------

2 rows in set (0.00 sec)

The UPDATE Command


Information in a database can change. To change the value in an existing record, UPDATE command is used. 

If Larry Wall has turned 47, it can be updated by using the following query.

mysql> UPDATE age_information SET age = 47



   WHERE lastname = ´Wall´;

Query OK, 1 row affected (0.00 sec)


Rows matched: 1 Changed: 1 Warnings: 0


mysql> SELECT * FROM age_information;


-------------------------------------

 | lastname | firstname | age |


-------------------------------------

 | Wall | Larry | 47 |


 | Torvalds | Linus | 31 |


 | Raymond | Eric | 40 |


-------------------------------------

3 rows in set (0.00 sec)


The WHERE clause must be used in the above query. Otherwise, if only  UPDATE age_information SET age = 47 has been entered, all the records in the database would have been given the age of 47!

The database is required to know that Larry is 46, turning 47. Instead of keeping track of this, for Larry's next birthday his age is simply incremented. 

mysql> SELECT * FROM age_information;

-------------------------------------

 | lastname | firstname | age |


-------------------------------------

 | Wall | Larry | 47 |


 | Torvalds | Linus | 31 |


 | Raymond | Eric | 40 |


-------------------------------------

3 rows in set(0.00 sec)


mysql> UPDATE age_information SET age = age + 1



   WHERE lastname = ´Wall´;


Query OK, 1 row affected (0.00 sec)


Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM age_information;

-------------------------------------

 | lastname | firstname | age |


-------------------------------------

 | Wall | Larry | 48 |


 | Torvalds | Linus | 31 |


 | Raymond | Eric | 40 |


-------------------------------------
3 rows in set(0.00 sec)

The DELETE Command


The DELETE command is used to delete a record from the table.


mysql> DELETE FROM age_information


   WHERE lastname = 
´Raymond´;


Query OK, 1 row affected (0.00 sec)


mysql> SELECT * FROM age_information;

-------------------------------------

 | lastname | firstname | age |


-------------------------------------

 | Wall | Larry | 48 |


 | Torvalds | Linus | 31 |


-------------------------------------
2 rows in set (0.00 sec)

SOME ADMINISTRATIVE DETAILS

It is not optimal from a security standpoint, if everything has been executed as the root MySQL user. A better practice is to create a MySQL user who can create and update tables as needed.


First, as a security measure, change the MySQL root password when logging in to the server:


# mysqladmin password IAmGod

Now when mysql executes, a password must be provided using the -p switch. If we forgot the –p in 



$ mysql -u root
the following error will be displayed.
ERROR 1045: Access denied for user: ´root@localhost´ (Using password: NO)

Try again using -p. So again enter the following :




$ mysql -u root -p

Enter password:


After executing $ mysql -u root –p, it will ask for the password. When it is typed the following message is displayed.

Welcome to the MySQL monitor. Commands end with ; or \g.


Your MySQL connection id is 15 to server version: 3.23.36


Type ´help;´ or ´ \h´ for help. Type ´\c´ to clear the buffer 

mysql>


Doing all the SQL Queries in the database as the MYSQL root user is not so good. So a new user is created. This involves modifying the database named mysql, which contains all the administrative information for the MySQL server, so first the mysql database is used and then the privileges for a new user are granted.

mysql> USE mysql;

mysql> GRANT SELECT,INSERT,UPDATE,DELETE



   ON people.* TO apache@localhost


 
   IDENTIFIED BY ´LampIsCool´;


Query OK, 0 rows affected (0.00 sec)


The user apache is being granted the ability to do most everything within the database, including being able to delete entries in tables within the people database. However, apache cannot delete the people database, only entries within the tables in the database. The user apache can access the people database from localhost only (instead of being able to log in over the network from another machine).

The IDENTIFIED BY clause in the SQL command sets the apache user's password to LampIsCool. Setting the password is necessary only the first time permissions are granted for this user—later, when the apache user is given permissions in other databases, the password doesn't need to be reset.

To verify that these changes were made, log in as apache:

$ mysql -u apache –p
Enter password:


Welcome to the MySQL monitor. Commands end with ; or \g.


Your MySQL connection id is 27 to server version: 3.23.36


Type ´help;´ or ´\h´ for help. Type ´\c´ to clear the buffer


mysql> USE people


mysql> SHOW TABLES;

--------------------------

 | age_information |


--------------------------
1 row in set (0.00 sec)


mysql> SELECT * FROM age_information;


-------------------------------------

 | lastname | firstname | age |


-------------------------------------

 | Wall | Larry | 48 |


 | Torvalds | Linus | 31 |


 | Raymond | Eric | 40 |


-------------------------------------
3 rows in set (0.00 sec)

DATABASE INDEPENDENT INTERFACE

Running MySQL commands from the shell is well and good the first 12 times it has to be done. After that, the typical lazy programmer starts thinking of ways to automate the process. 
The DataBase Independent interface (DBI) enables one to write programs to automate database maintenance and to write other scripts to interface with MySQL.


DBI is a module that provides methods to manipulate SQL databases. With DBI, one can connect to a database within a PHP Script or others like Perl script and issue all kinds of queries, including SELECT, INSERT, and DELETE. 

Following  are the steps to create Php scripts that can be run from the shell.


First, create the directory and go there:
$ mkdir /var/www/bin


$ cd /var/www/bin
The first thing to do is connect to the database. The function to connect to MySQL is called mysql_connect. This function returns a resource which is a pointer to the database connection. It's also called a database handle. 

<?php

$username = "your_name";

$password = "your_password";

$hostname = "localhost"; 


//connection to the database

$dbhandle = mysql_connect($hostname, $username, $password) 

  or die("Unable to connect to MySQL");

echo "Connected to MySQL<br>";

?>

When this script is run, "Connected to MySQL" message will be displayed.  If connection to the server is not made, the password, username and hostname are checked.

Once connection has established, a database can be selected to work with. Let's assume the database is called 'examples'. To start working in this database,  the mysql_select_db() function is needed.
The function used to perform queries is named - mysql_query(). The function returns a resource that contains the results of the query, called the result set. 
To examine the result, the mysql_fetch_array function, which returns the results row by row is used. In the case of a query that doesn't return results, the resource that the function returns is simply a value true or false.
A convenient way to access all the rows is with a while loop. Add the code to the script: Finally, the connection is closed. 

<?php

$username = "your_name";

$password = "your_password";

$hostname = "localhost"; 


//connection to the database

$dbhandle = mysql_connect($hostname, $username, $password) 

 or die("Unable to connect to MySQL");

echo "Connected to MySQL<br>";


//select a database to work with

$selected = mysql_select_db("examples",$dbhandle) 

  or die("Could not select examples");


//execute the SQL query and return records

$result = mysql_query("SELECT id, model,year FROM cars");

//fetch tha data from the database 

while ($row = mysql_fetch_array($result))

 {

   echo "ID:".$row{'id'}." Name:".$row{'model'}."Year: ". //display 
 


   the results

   $row{'year'}."<br>";

 }


//close the connection

mysql_close($dbhandle);

?>


Failure to connect is handled differently by this program. It executes connect() and uses the or to mimic an unless. If the connect() fails, the script dies.

The script then prepares the SQL query "SELECT id, model, year FROM cars".

The results of the SELECT query are handled with a while loop. The fetch_array() method returns a list of data for the next row of data that is returned by the query. The information is then printed.


<?


Php

 //the example of inserting data with variable from HTML form

//input.php


mysql_select_db("employees");

//inserting data order

$order = "INSERT INTO data_employees(name, address)
        VALUES ('$name', '$address')";


//declare in the order variable

$result = mysql_query($order);  //order executes

if($result)

{


    echo("<br>Input data is succeed");

}

 else

{

  echo("<br>Input data is fail");

}

?>
Before new data is inserted into the table, the script connects to the server and shows the current contents. Then the script asks the user to enter the name and address for the new record.

The next step is to insert the variables into the query.


To check that the insert worked, the script displays the contents of the table after the INSERT is executed. Executing that code produces:

$ ./insert.php

Larry Wall, #1, Perl Way

Linus Torvalds, 123 Main St

----------------------------------------


Enter name: Eric Raymond

Enter address: 987, Oak St

----------------------------------------


Larry Wall, #1, Perl Way

Linus Torvalds, 123 Main St
          Eric Raymond, 987, Oak St
TABLE JOINS

In the world of relational databases, data often has complex relationships and is spread across multiple tables. Sometimes it is necessary to grab information from one table based on information in another. This requires that the two tables be joined.

For an example, we create a new table in the people database called addresses that contains information about people's addresses.

mysql> CREATE TABLE addresses 


   (lastname CHAR(20),


    firstname CHAR(20),


    address CHAR(40), 
 
 
    city CHAR(20),
                         state CHAR(2),


    zip CHAR(10));

The table needs some data:


mysql> INSERT INTO addresses


   (lastname, firstname, address, city, state, zip)


             VALUES ("Wall", "Larry", "Number 1 Perl Way",


             "Cupertino", "CA", "95015-0189");


mysql> INSERT INTO addresses



   (lastname, firstname, address, city, state, zip)


 
   VALUES ("Torvalds", "Linus", "123 Main St.",



   "San Francisco", "CA", "94109-1234");


mysql> INSERT INTO addresses



   (lastname, firstname, address, city, state, zip)



   VALUES ("Raymond", "Eric", "987 Oak St.",



   "Chicago", "IL", "60601-4510");


mysql> INSERT INTO addresses



   (lastname, firstname, address, city, state, zip)



   VALUES ("Kedzierski", "John", "3492 W. 75th St.",



   "New York", "NY", "10010-1010");


mysql> INSERT INTO addresses



   (lastname, firstname, address, city, state, zip)



   VALUES ("Ballard", "Ron", "4924 Chicago Ave.",


             "Evanston", "IL", "60202-0440");

mysql> SELECT * FROM addresses;

-----------------------------------------------------------------------------------

 | lastname |firstname|address |city |state|zip |


-----------------------------------------------------------------------------------

 |Wall |Larry |# 1 Perl Way |Cupertino |CA |95015-0189|


 |Torvalds |Linus |123 Main St. |San Francisco |CA |94109-1234|


 |Raymond |Eric |987 Oak St. |Chicago |IL |60601-4510|


 |Kedzierski|John |3492 W. 75th St. |New York |NY |10010-1010|


 |Ballard |Ron |4924 Chicago Ave.|Evanston |IL |60202-0440|

------------------------------------------------------------------------------------

5 rows in set (0.00 sec)
There exists another table named age_information.


mysql> SELECT * FROM age_information;


-------------------------------------


 | lastname | firstname | age |



-------------------------------------


 | Wall | Larry | 46 |



 | Torvalds | Linus | 31 |



 | Raymond | Eric | 40 |



 | Kedzierski | John | 23 |



 | Ballard | Ron | 31 |



--------------------------------------
5 rows in set (0.00 sec)


If we want to find out the city in which under-40-year-old people live in. This requires looking up information in two tables: To find out who is under 40, we look in age_information, and to find out the city, we look in addresses. 


Because both tables are being used, we need to be specific about which table a particular field belongs to. In other words, instead of saying SELECT city, we need to say what table that field is in, so we say SELECT addresses.city. The addresses.city tells MySQL that the table is addresses and the field is city.


Moreover, we need to hook the two tables together somehow—we do so with the following command by making sure the lastname from the addresses row matches the lastname from the age_information rowand also for the firstname. So, the command is:

mysql> SELECT addresses.city FROM addresses, 




    age_information  WHERE age_information.age < 40 


   AND  addresses.lastname = age_information.lastname



   AND addresses.firstname = age_information.firstname;


-----------------------


 | city |



-----------------------


 | San Francisco |



 | NewYork |



 | Evanston |



----------------------

3 rows in set (0.02 sec)


To find the last names and zip codes for all those 40 and over, and order the data based on the last name:

mysql> SELECT addresses.lastname, addresses.zip


-> FROM addresses, age_information


-> WHERE age_information.age >= 40 AND


-> addresses.lastname = age_information.lastname AND


-> addresses.firstname = age_information.firstname


-> ORDER BY addresses.lastname;




-----------------------------------



 | lastname | zip |




-----------------------------------



 | Raymond | 60601-4510 |




 | Wall | 95015-0189 |




-----------------------------------

2 rows in set (0.02 sec)
LOADING AND DUMPING A DATABASE

A database can be loaded or otherwise SQL commands can be executed from a file. The commands or database are put into a file and it is named as mystuff.sql and it can be loaded in with this command:

$ mysql people < mystuff.sql
 A database can also be dump out into a file with this command:


$ mysqldump people > entiredb.sql


