OPEN SOURCE TECHNOLOGIES

REFERENCE :

“OPEN SOURCE DEVELOPMENT WITH LAMP – Using Linux, Apache, MY SQL, Perl and PHP”, Pearson Education, 2009.

JAMES LEE & BRENT LEE

·
 UNIT – 4

 PHP

INTRODUCTION
PHP (Hypertext Preprocessor) is an open-source HTML-embedded server side scripting language. It was developed by Rasmus Lerdorf, Zeev Suraski, Andi Gutmans, and others. The first version was released in 1994.

PHP is used to develop dynamic and interactive web applications and also used as a general purpose programming language. A lot of PHP syntax is borrowed from other languages such as C, Java and Perl. However, PHP has a number of unique features and specific functions as well.

A PHP page is a file with .php extension that contains a combination of HTML tags and PHP scripts that run on a web server.
· The recursive acronym for PHP is ‘Hypertext Preprocessor’. HyperText means, text containing all sorts of web markups, PreProcessor means all of the HyperText is processed first and then the result is send as pure HTML to the web browser. A client cannot see the PHP source code because it is pre processed and interpreted.

· PHP is Server ide scripting language. Server side scripting means that all of the code in php is processed on the web servers rather than on clients machine.
POPULAR FEATURES OF PHP
· The best thing in using PHP is extremely easy for a newcomer, and also it has many advanced features for a professional programmer.
· PHP is easy to learn and runs efficiently on the server side.
· PHP can be used on all major operating systems, including Linux, many Unix variants, Microsoft Windows, Mac OS X, RISC OS, and many more.
· PHP has also support for most of the web servers today. This includes Apache, IIS, and many others.
· PHP is FREE to download from the official PHP resource: www.php.net
· PHP supports many databases like MySQL, PostgreSQL, Oracle, Sybase, Informix, and Microsoft SQL Server.
· PHP can dynamically generate HTML, PDF, Flash, Text, CSV, XML and many others.
· PHP takes less time to make a website.
· There are many good frameworks available in PHP.
CHARACTERISTICS OF PHP
Five important characteristics make PHP's practical nature possible.

· Simplicity

· Efficiency

· Security

· Flexibility

· Familiarity

EMBEDDING PHP INTO HTML

There are several ways to embed PHP code into HTML documents.
1) One way is to put the PHP code within the tags <? ... ?>

Ex : <? echo "hello, world!"; ?>

Most PHP programmers choose this syntax.
2) If PHP is combined with XML, however, there are conflicts with this syntax. In XML the <? ...?> construct is a special thing called a processing instruction. If PHP and XML are needed in the same file, one can use the alternative PHP tag <?php ... ?>

 Ex : <?php echo "hello, world!"; ?>
3) Some HTML editors (such as FrontPage) don't like processing instructions, so another alternative is to use the <SCRIPT> tag. This is the syntax:

<SCRIPT LANGUAGE="php"> echo "hello, world!"; </SCRIPT>
4) And the final way is to use the < % ... %> tag:

 Ex : <% echo "hello, world!"; %>
CONFIGURATION
To run PHP code on the local machine three things are needed.

1. Web Server (e.g. Apache)

2. PHP (Interpreter)

3. MySQL Databases (optional)
A Web Server can be installed separately, PHP interpreter and MySQL databases, but to make work easier, developers has made all in one setup package called WAMP, LAMP, MAMP and XAMPP which will automatically install and setup PHP environment on Windows, Linux or MAC machines.
· WAMP = Windows, Apache , MySQL, PHP

· LAMP = Linux, Apache , MySQL, PHP

· MAMP = MAC , Apache , MySQL, PHP

· XAMPP = Windows/Linux/MAC, Apache, MySQL,PHP
LINUX OS
Once Linux is installed, Apache is already configured for PHP. To use PHP, simply name the PHP files with the .php extension.
WINDOWS OS
To start writing PHP scripts, there is a need to access a Web server which runs PHP. The main options are:
· Install Apache and PHP or Install WAMP (Windows Apache MySQL and PHP) Server or Install XAMPP(Windows/Linux/MAC, Apache , MySQL, PHP) server.

· If WAMP is installed, run wamp server from the program list and then type http://localhost in the web browser for start working and also make the project folder in WAMP www folder.
· If XAMPP is installed, run xampp server from the program list and then type http://localhost in the web browser for start working and also make the project folder in XAMPP htdocs folder.
· Or find a web hosting plan with PHP and MySQL support and Run your PHP scripts on your Web host.

Creating the Script
To write the PHP script, a text editor program is used. Most computers come with one or more text editors, for example:
· Windows Notepad

· Vi or Emacs on Linux
· TextEdit on Mac OS X

By professionally, Adobe Dreamweaver, NetBeans and Sublime Text is used to edit PHP code.

LANGUAGE SYNTAX

PHP is whitespace-insensitive. Therefore, this statement:

<? $title="PHP is cool";echo "<title> $title </title>"; ?>

 might be clearer if written as this:

<?

$title = "PHP is cool";

echo "<title> $title </title>";

?>

Variable names in PHP are case-sensitive. For ex, $a is different from $A. Function names (including user-defined functions) are case-insensitive. For ex, rose(), ROSE(), Rose() are all equal. As in C, C++ and Java, statements are terminated by a semicolon. Also single-line bodies do not require the curly braces ({}), while multiline bodies require the curly braces.

Example :

<?

if ($num > 10)

echo "\$num is greater than 10";

if ($name == "John Doe")

{

 echo "You say your name is John Doe";

 echo "Are you sure that is your name?";

}

?>

PHP supports three types of comments:

Perl/sh style - comment until end of line

/* C style */

// C++ style (preferred for one-line comments)

C-style comments can span more than one line:

/*

the following code is so cool,

it almost doesn't need to be

commented

*/

VARIABLES

All variable names (including arrays) begin with a dollar sign ($) followed by an alpha (A–Z, a–z) or underscore (_), followed by zero or more alphanumeric characters or underscores. There is no limit on variable name length.

$i

$_1st_name

$array[0]

DATA TYPES
PRIMITIVE DATA TYPES

PHP has three primitive data types: integers, floats, and strings.

· Integers: long ints (32 bits)

 - Decimal: 10

 - Hexadecimal: 0x2A

 - Octal: 025

<?
 // these all represent the same value

$myint = 69; // decimal

$myint = 0x45; // hexadecimal

$myint = 0105; // octal

?>
· Floats:

 - Standard: 4.745

 - Scientific: 12.3E-4

 <?

 // these both represent the same value

 $myfloat = 169.345;

 $myfloat = 1.69345e2;

 ?>

· Strings :

 Single quotes:

 <?

 $os = ´Linux´;

 echo ´Favorite OS\t$os\n´;

 // outputs: Favorite OS\t$os\n

 ?>

 Double quotes:

 <?

 $os = "Linux";

 echo "Favorite OS\t$os\n";

 // outputs: Favorite OS<tab>Linux<ret>

 ?>
· Escape characters:
\n - newline

\t - tab

\r - carriage return

\\ - backslash
\$ - dollar sign
Data Type Examples

The following example shows how PHP uses the various data types.

<?

$integer = 12;

$float1 = 1.345e23;

$float2 = 4995.392;

$string1 = ´My favorite number is $integer´;

$string2 = "I am this big: $float1 or $float2";

?>

<html>

<head>

<title>Integers, Floats and Strings in PHP</title>

</head>

<body bgcolor="#ffffff">

Integer: <? echo $integer; ?>

Float 1: <? echo $float1; ?>

<i>note that the format is *almost* the same as assigned</i>

Float 2: <? echo $float2; ?>

<i>the format is the same as assigned</i>

String 1: <? echo $string1; ?>

String 2: <? echo $string2; ?>

</body>

</html>

An integer, two floats, and two strings are demonstrated. The two floats are assigned in a different format, and PHP maintains that. The difference between single quotes and double quotes is demonstrated.

The output of this program is as follows :

[image: image1.emf]
ARRAYS

To index a PHP array, the syntax $array[n] is used, where [n] is an integer beginning at 0. But when referring to the entire array, the dollar sign ($) is used.

Ex : sort($array).

PHP arrays can be treated in one of two ways: as enumerated arrays or as associative arrays.
Enumerated Arrays :

 Enumerated arrays are zero-based arrays indexed with integer values- $array[0]:

<?

$a[0] = 10;

$a[1] = 4*4;

$a[2] = 12;

echo $a[0] + $a[1] + $a[2];

// echoes 38

?>

Enumerated arrays can be created by simply assigning values to each array index, or they can be created with the array() function, which returns an array of values:

<?

$a = array(2, 4, 6, 8);

echo $a[0];

// echoes 2

$b = array("foo", "bar", "blah");

echo $b[1];

// echos bar

?>

Associative Arrays :

Associative arrays are indexed with unique strings— $array["key"]

<?

$capital["Illinois"] = "Springfield";

$capital["California"] = "Sacramento";

$capital["Texas"] = "Austin";

$capital["Wisconsin"] = "Madison";

$state = "Illinois";

echo "$state: $capital[$state]";

// echoes "Illinois: Springfield"

?>

Associative arrays can be created by assigning values individually to keys as just shown, or they can be created with the array() function:

<?

$capital = array("Illinois" => "Springfield",

 "California" => "Sacramento",

 "Texas" => "Austin",

 "Wisconsin" => "Madison"
);

$state = "Illinois";

echo "$state: $capital[$state]";

// echoes "Illinois: Springfield"

?>
WEB VARIABLES

PHP can be used to process data that is submitted via forms; such data is accessible in several ways. To illustrate this, a simple form is created in /var/www/html/php/form1.html:

<html><head>

<title>PHP Form Example 1</title>

</head>

<body bgcolor="#ffffff">

<form action="/php/form1.php">

Var 1: <input type="text" name="var1">

Var 2: <input type="text" name="var2">

<input type="submit">

</form></body></html>

The result of using this form, with example data entered is shown in following figure. When the form is submitted, the form data is passed to the PHP program in several ways.
[image: image2.emf]

When the data is posted to the PHP program specified in the action= form attribute (/php/form1.php in this example), PHP variables are automatically created in that PHP script when it executes. These variables have the same name as the form elements, preceded by "$". In this form, there are two fields—var1 and var2—so PHP creates two variables in/php/form1.php: $var1 and $var2.

An Important Security Consideration

This "feature" of PHP can create a huge security hole. Consider this code:

if (something_important())

{

$authenticated = true;

}

Here we are relying on something_important() to verify that we can set the authentication flag to true. We can assume something_important() does something important to authenticate the user. However, it would be easy to pass a parameter to this program using the name/value pair that we want, as in:

http://localhost/php/big_security_hole.php?authenticated=true.

Doing this would magically set $authenticated to true. Therefore, even if something_important() returned false, the very important flag $authenticated would be assigned true.

Therefore, it is strongly suggested that this feature is turn off for PHP. This can be done for the entire site or for a specific directory. Because this is a nasty problem, it is suggested to turn it off for the whole site by adding the following line to /etc/httpd/conf/httpd.conf:

php_flag register_globals Off

To turn it off for only a specific directory in the web document tree, the following lines are added to the configuration file:

<Directory /var/www/html/php>

php_flag register_globals Off

</Directory>

Load the new config file:

/etc/init.d/httpd graceful

Now that PHP is more secure.

HOW TO GRAB THE POSTED DATA?

PHP Version 4.1.0 has added a new and strongly suggested approach to grabbing the posted data.
Pre–PHP Version 4.1.0

PHP has two special array variables that assign the data passed into the program : $HTTP_GET_VARS and HTTP_POST_VARS.

All the data passed in using the GET method is stored in the array $HTTP_GET_VARS, so the value of the field var1 can be accessed with

$HTTP_GET_VARS["var1"].

If the data were passed to the program using POST instead of GET, the data would be passed into the array $HTTP_POST_VARS instead, so the data could be accessed with $HTTP_POST_VARS["var1"].

It is useful to have both variables because data can be posted through the form and at the same time, the GET method is used to pass the data through the URL. The parameters can have the same names and grab the posted data from $HTTP_POST_VARS and the URL data from $HTTP_GET_VARS.
The file that processes the form data from /php/form1.php, looks like this:

<html>

<head>

<title>PHP Form 1 Result</title>

</head>

<body bgcolor="#ffffff">

Using $var1: <? echo $var1; ?>

Using $var2: <? echo $var2; ?>

Using $HTTP_GET_VARS:

 <? echo $HTTP_GET_VARS["var1"]; ?> ,

 <? echo $HTTP_GET_VARS["var2"]; ?>

</body>

</html>

This program produces the following output.
[image: image3.emf][image: image4.emf]
Post–Version 4.1.0

Version 4.1.0 adds a new, improved, and strongly suggested approach to grab the posted data.
PHP version 4.1.0 has added several new global variables:

 $_GET - an array of the data sent with GET

 (replaces $HTTP_GET_VARS)

 $_POST - an array of the data sent with POST

 (replaces $HTTP_POST_VARS)

 $_COOKIE - HTTP cookie variables

 $_REQUEST - a merge of theGET, POST, and cookie data

Version 4.1.0 introduces some other helpful variables:

$_SERVER - the Apache server environment variables,

 such as REMOTE_ADDR

$_ENV - the environment variables

$_SESSION - data registered by the session module

Example :

Using $_GET:

 <? echo $_GET["var1"]; ?> ,

 <? echo $_GET["var2"]; ?>

OR

Using $_REQUEST:

 <? echo $_REQUEST["var1"]; ?> ,

 <? echo $_REQUEST["var2"]; ?>
OPERATORS
Operators are used to perform operations on variables and values. PHP divides the operators in the following groups:
· Arithmetic operators
· Increment/Decrement operators
· Comparison operators
· Assignment operators
· Logical operators
· Array operators
· String operators
PHP Arithmetic Operators
The PHP arithmetic operators are used with numeric values to perform common arithmetical operations, such as addition, subtraction, multiplication etc.
	Operator
	Name
	Example
	Result

	+
	Addition
	$x + $y
	Sum of $x and $y

	-
	Subtraction
	$x - $y
	Difference of $x and $y

	*
	Multiplication
	$x * $y
	Product of $x and $y

	/
	Division
	$x / $y
	Quotient of $x and $y

	%
	Modulus
	$x % $y
	Remainder of $x divided by $y

	**
	Exponentiation
	$x ** $y
	Result of raising $x to the $y'th power (Introduced in PHP 5.6)

PHP Increment / Decrement Operators

The PHP increment operators are used to increment a variable's value. The PHP decrement operators are used to decrement a variable's value.
	Operator
	Name
	Description

	++$x
	Pre-increment
	Increments $x by one, then returns $x

	$x++
	Post-increment
	Returns $x, then increments $x by one

	--$x
	Pre-decrement
	Decrements $x by one, then returns $x

	$x--
	Post-decrement
	Returns $x, then decrements $x by one

PHP Comparison Operators
The PHP comparison operators are used to compare two values (number or string):
	Operator
	Name
	Example
	Result

	==
	Equal
	$x == $y
	Returns true if $x is equal to $y

	===
	Identical
	$x===$y
	Returns true if $x is equal to $y, and they are of the same type

	!=
	Not equal
	$x != $y
	Returns true if $x is not equal to $y

	<>
	Not equal
	$x <> $y
	Returns true if $x is not equal to $y

	!==
	Not identical
	$x !==$y
	Returns true if $x is not equal to $y, or they are not of the same type

	>
	Greater than
	$x > $y
	Returns true if $x is greater than $y

	<
	Less than
	$x < $y
	Returns true if $x is less than $y

	>=
	Greater than or equal to
	$x >= $y
	Returns true if $x is greater than or equal to $y

	>=
	Greater than or equal to
	$x >= $y
	Returns true if $x is greater than or equal to $y

	>=
	Greater than or equal to
	$x >= $y
	Returns true if $x is greater than or equal to $y

	<=
	Less than or equal to
	$x <= $y
	Returns true if $x is less than or equal to $y

PHP Assignment Operators
The PHP assignment operators are used to assign a value to a variable. The basic assignment operator in PHP is "=".
	Assignment
	Same as...
	Description

	x = y
	x = y
	The left operand gets set to the value of the expression on the right

	x += y
	x = x + y
	Addition

	x -= y
	x = x - y
	Subtraction

	x *= y
	x = x * y
	Multiplication

	x /= y
	x = x / y
	Division

	x %= y
	x = x % y
	Modulus

PHP Logical Operators

The PHP logical operators are used to combine conditional statements.
	Operator
	Name
	Example
	Result

	and
	And
	$x and $y
	True if both $x and $y are true

	or
	Or
	$x or $y
	True if either $x or $y is true

	xor
	Xor
	$x xor $y
	True if either $x or $y is true, but not both

	&&
	And
	$x && $y
	True if both $x and $y are true

	||
	Or
	$x || $y
	True if either $x or $y is true

	!
	Not
	!$x
	True if $x is not true

PHP Array Operators

The PHP array operators are used to compare arrays.
	Operator
	Name
	Example
	Result

	+
	Union
	$x + $y
	Union of $x and $y

	==
	Equality
	$x == $y
	Returns true if $x and $y have the same key/value pairs

	===
	Identity
	$x=== $y
	Returns true if $x and $y have the same key/value pairs in the same order and of the same types

	!=
	Inequality
	$x != $y
	Returns true if $x is not equal to $y

	<>
	Inequality
	$x <> $y
	Returns true if $x is not equal to $y

	!==
	Non-identity
	$x !== $y
	Returns true if $x is not identical to $y

PHP String Operators
PHP has two operators that are specially designed for strings.
	Operator
	Name
	Example
	Result

	.
	Concatenation
	$txt1 . $txt2
	Concatenates $txt1 and $txt2

	.=
	Concatenation assignment
	$txt1.= $txt2
	Appends $txt2 to $txt1

FLOW-CONTROL CONSTRUCTS

PHP's constructs are similar to C. However, for most of the constructs, PHP has two preferred syntax forms. The first is C-like and is suggested when the entire block is contained within a single PHP block. The second is useful when the PHP code is embedded within a large block of HTML. As in C, C++, and Java, the curly braces are optional for the bodies of the constructs if the body is one statement.

if/elseif/else

Here are the two PHP syntaxes for an if:

1)
if (condition)

 {

 statements

 }

 elseif (condition)

 {

 statements

 }

 else

 {

 statements

 }

2)
if (condition):

 statements

elseif (condition):

 statements

else :

 statements

endif;

Example :

<?

$name = $HTTP_GET_VARS["name"];

$age = $HTTP_GET_VARS["age"];

// this syntax is recommended when the entire if

// is contained within a PHP block like this one

$msg = "You $name are ";

if ($age < 13)

 {

$msg = $msg . "a child";

}

 elseif ($age < 18)

{

$msg = $msg . "a teenager";

}

 elseif ($age < 62)

{

$msg = $msg . "an adult";

}

else

 {

$msg = $msg . "a senior";

}

// the syntax of the if statement below is

// recommended if you have embedded PHP code

?>

<html>

<head>

<title>PHP if statement</title>

</head>

<body bgcolor="#ffffff">

<? echo $msg; ?>

<hr>

<? if ($name < "N") : ?>

Your name begins with A through M

<? else: ?>

Your name begins with N through Z

<? endif; ?>

</body>

</html>

The result of this code can be examined by invoking the program and passing data into it. The result can be seen in the following figure.
[image: image5.emf]
switch :

Like C and C++, PHP has a switch statement. Like the PHP if, it has two different syntaxes:

1)
 switch (expression)

{

 case expr:

 statements

 break;

 case expr:

 statements

 break;

 default:

 statements

 break;

 }

2)
 <?

 switch (expression):

 case expr:

statements

break;

 case expr:

statements

break;

 default:

statements

break;

 endswitch;

 ?>

As in C and C++, the break in each branch is crucial. If it weren't there, program execution would just flow through each executable statement in the switch construct following the valid one, not just the ones related to the specific case.

The switch is often used to replace the nested if where each conditional expression compares the same variable against a value. An if statement:

<?

if ($i == 0)

{

statements0

}

 elseif ($i == 1)

{

statements1

}

elseif ($i == 2)

{

statements2

}

 elseif ($i == 3)

{

statements3

}

 elseif ($i == 4)

{

statements4

}

?>

can be rewritten as a switch:

<?

switch ($i)

{

case 0:

 statements0

 break;

case 1:

 statements1

 break;

case 2:

 statements2

 break;

case 3:

 statements3

 break;

case 4:

 statements4

 break;

}

?>
while Loop

PHP's while loop is C-like, and also has two syntaxes:

1)
 while (condition)

 {

 statements

 }

2)
 while (condition):

 statements

 endwhile;

Like C, C++, and Java, PHP allows one to break out of a loop with break and go to the next iteration with the continue statement.
do ... while Loop

PHP also has a do ... while loop:

do

{

 statements

}while (condition);

for Loop

PHP has a C-like for loop with two syntax options:

1)
for (start_expr; condition; step_expr)

{

statements

}

2)
for (start_expr; condition; step_expr):

 statements

endfor;

foreach Loop

PHP has a foreach loop, which iterates through arrays in two distinct ways. Each foreach method has two syntax variations. The first method returns only the value and is used to iterate through enumerated arrays.

foreach (array_expr as variable)

{

 statements

}

OR

 foreach (array_expr as variable):

 statements

endforeach;

These constructs loop through the array represented by array_expr , assigning the variable variable the value of that element.
Example :

<?

$array = array(2, 4, 6, 8);

foreach ($array as $value)

 {

 echo "$value ";

 }

// echoes "2468"

?>

Here, $value takes on each value of the array $array, and the body is executed for each of those values. The variable $value is first 2, then 4, then 6, and finally 8.

The second foreach method returns both the key and the value, which is used to iterate through associative arrays.
It has this syntax:

foreach (array_expr as key => value)

{

 statements

}

OR

foreach (array_expr as key => value):

 statements

endforeach;

Key/value arrays are stored in the order created. This version of foreach loops through array_expr , assigning the next key/value pair to key , value . Here is an example:

<?

$array = array("name" => "John Doe",

 "age" => 39,

 "phone" => "555-1234");

foreach ($array as $k => $v)

{

echo "$k: \t $v \n";

}

// echoes:

// name: John Doe

// age: 39

// phone: 555-1234

?>

Note that the foreach that iterates through an associative array can be used to iterate through enumerated arrays. The indices 0 , 1, and so on are treated as the keys:

<?

$a = array(2, 4, 6, 8);

foreach ($a as $k => $v)

{

echo "$k = $v";

}

// echoes: 0 = 2

// 1 = 4

// 2 = 6

// 3 = 8

?>

The following example shows the various looping constructs and can be found in /var/www/html/php/loops.php. It shows how to loop through an enumerated array using while, for, and foreach. It then demonstrates iteration through an associative array with a foreach.

<?

// enumerated array of numbers

$nums = array(2, 4, 6, 8);

// associative array of names and ages

$ages = array("Ron" => 31, "Gail" => 26, "Al" => 38,

 "Tom" => 36);

?>

<html>

<head><title>Examples of PHP Loops</title></head>

<body bgcolor="#ffffff">

<h3>Loop through $nums with the while loop</h3>

<?

$i=0;

while ($i < 4)

{

echo "$nums[$i] ";

$i++;

}

?>

<h3>Loop through $nums with the for loop</h3>

<?

for ($i = 0; $i < 4; $i++)

{

echo "$nums[$i] ";

}

?>

<h3>Loop through $nums with the foreach loop</h3>

<?

foreach ($nums as $v)

{

echo "$v ";

}

?>

<h3>Display ages in a table using the foreach loop</h3>

<table border="1">

<?

foreach ($ages as $k => $v)

{

echo "<tr><th>$k</th><td>$v</td></tr>";

}

?>

</table>

</body>

</html>

The result of this program is shown in the following figure.
[image: image6.emf]
WRITING PHP FUNCTIONS

PHP functions are similar to other programming languages.There are two steps in using a function.
· Creating a PHP Function

· Calling a PHP Function

The syntax to declare a function is:

function function_name(variable_list)

{

 statements

}

The syntax to call a function is: function_name(variable_list);

Example :

<?

function print_hello ()

{

echo "hello, world!";

}

?>

<html>

<head><title>PHP Functions - Part 1</title>

</head><body bgcolor="#ffffff">

<? print_hello();?>

</body></html>

This program defines the function print_hello(), which prints "hello, world!". The function is defined within the< ? ... ?> tags, just like any other PHP code. It is then invoked within the <body> tags with <? print_hello(); ?>.
Return Values

A PHP function can return a single value or an array of values. The return statement returns the value from the function to the caller.This example illustrates the return of a string, an array of integers, and an associative array.

<?

function return_string()

{

// return a string

return "hello, world!";

}

function return_array1()

{

// return an array of integers

return array(2, 4, 6, 8);

}

function return_array2()

{

// return a more complicated array

$a = array("one" => "first",

 "two" => "second",

 "three" => "third");

return $a;

}

?>

<html>

<head>

<title>PHP Functions</title>

</head>

<body bgcolor="#ffffff">

<?

// echo the return value from return_string()

echo return_string();

?>

<hr>

<?

// grab the array returned from return_array1()

// foreach through it, echoing the value

$array1 = return_array1();

foreach ($array1 as $value)

{

echo "$value
";

}

?>

<hr>

<?

// grab the array returned from return_array2()

// foreach through it, echoing the keys and values

$array2 = return_array2();

foreach ($array2 as $k => $v)

{

echo "$k : $v
";

}

?>

</body></html>

The output of this program is as follows :
[image: image7.emf][image: image8.emf]
Function Arguments

As in all other languages, arguments can be passed to PHP functions, as follows:

function no_default_args($a, $b, $c)

{

echo "<hr>";

echo "no_default_args(): \$a : $a
";

echo "no_default_args(): \$b : $b
";

echo "no_default_args(): \$c : $c
";

}

This function is called no_default_args only because it does not have default argument values. It accepts three arguments$: a, $b, and $c. It then prints an <hr> tag, followed by the value of the three variables. As with all variables within a function, the three variables in this function are by default locally scoped. To call this function, the arguments can be put within the parentheses simply: no_default_args("foo", $variable_name, 4.9485);

If this function were called with fewer than three arguments, a warning message would be displayed, and the function would execute with the variables that were not passed a value being given the value of the empty string. If this function were called with more than three arguments, the extra arguments would be ignored.This shows that a function can be written so that the arguments are given default values if values are not provided.

To provide default arguments to a function, simply assign the variable within the parentheses in the function definition:

function default_args($a = 2, $b = 4, $c = 6)

{

echo "<hr>";

echo "default_args(): \$a : $a
";

echo "default_args(): \$b : $b
";

echo "default_args(): \$c : $c
";

}

In this function, $a accepts the value of the argument passed to it, or it defaults to 2 if no value is given.

If the function is called as: default_args("foo", "bar", 10.498); $a receives the value "foo", $b receives value "bar", and $c receives the value 10.498.

If the function is called as: default_args("foo"); $a receives the value "foo", but $b receives its default value, 4, and $c receives its default value, 6.

 If the function is called as: default_args(); each variable receives its default value.

Arguments can be dropped only at the end of the list, not at the beginning. Thus default_args(,"bar"); is a syntax error. The value for the first argument must be provided.

The following example illustrates the two preceding concepts plus it shows that a function can receive as its argument an array variable. The example can be found in /var/www/html/php/function3.php:

<?

function no_default_args($a, $b, $c)

{

echo "<hr>";

echo "no_default_args(): \$a : $a
";

echo "no_default_args(): \$b : $b
";

echo "no_default_args(): \$c : $c
";

}

// this function is defined so that the arguments

// have default values

function default_args($a = 2, $b = 4, $c = 6)

{

echo "<hr>";

echo "default_args(): \$a : $a
";

echo "default_args(): \$b : $b
";

echo "default_args(): \$c : $c
";

}

// this function accepts an array

function expects_array($a)

{

echo "<hr>";

foreach ($a as $k => $v)

{

echo "expects_array(): $k : $v
";

}

}

?>

<html>

<head>

<title>PHP Functions - Arguments</title>

</head>

<body bgcolor="#ffffff">

<?

// no_default_args() expects 3 arguments

no_default_args("foo", "bar", 20);

no_default_args(10, 48*23, 1.884e-23);

// this one only passes in 2 args, but the function

// expects3-awarning message is generated and

// the last arg gets empty string

no_default_args(1,2);

// use the defaults

default_args();

// override the first two defaults, use the third default

default_args("foo","bar");

// create an array to pass into expects_array()

$array = array("one" => "first",

 "two" => "second",

 "three" => "third");

// pass in an array because that is what it expects

expects_array($array);

// pass in a string, yet it expects an array – warning message!

expects_array("foo");

?>

</body>

</html>

As the comment implies, calling no_default_args() without three arguments generates a warning message. Calling expects_array(), a function that expects its argument to be an array, with an argument that is not an array produces a warning message.

The resulting error messages can be seen in the following figure.
[image: image9.emf] [image: image10.emf]

