UNIT I - OVERVIEW OF C

History of C

[image: image1.jpg]History of Programming

The root of all modern languages is ALGOL (introduce in
1960s).

ALGOL uses a structure programming.

ALGOL is popular in Europe

In 1967, Martin Richards developed a language called BCPL
(Basic Combined Programming Language)

Primarily BCPL is developed for system software

In 1970, Ken Thompson created a new language called B

B is created for UNIX os at Bell Laboratories.

Both BCPL and B were “typeless” languages

[image: image2.jpg]History of C

€ was evolved from ALGOL, BCPL and B.
C was developed by Dennis Ritchie at the Bell Laboratories
in 1972,

Added new features and concepts like “data types”.

It was developed along with the UNIX operating system.

It was strongly integrated with the UNIX operating system.
In 1983 American National Standards Institute (ANSI)
appointed a technical committee to define a standard for C.
The committee approved a version of C in December 1989
which is now known as ANSI C.

In 1990 International Standards Organization (ISO) has
approved C and this version of C is referred to as C89.

[image: image3.jpg]1960

1967

1970

1978

1083

1990
1999

International Group.
Martin Richards
Ken Thompsen
Kernighan and Ritchie

ANSI Committaa
1S0 Committes

Standardization Committae

[image: image4.jpg]Rich set of built-in functions
Operators can be used to write any complex program.
The C compiler combines the capabilities of an assembly
language with the features of a high-level language.

It is well sited for writing both system software and
business packages.

Due to variety of data types and powerful operators
programs written in C are efficient and fast.

There are only 32 keywords in C and its strength lies in its
built in functions.

C is highly portable.

[image: image5.jpg]Importance of C

Ability to extend itself.
Cis a Structured Programming Language (requiring
the user to think of a problems in terms of function
modules or blocks).

[image: image6.jpg]Fir. ram

#include<stdio.h> /Headerfile
main() /fmain function

4

i printing begins. ol
printf("l see, | remember”
-printing end

/o

- Stdioh is a header file which is included in our program by writing

#include<stdio.h> in first line of program.
= main() is function where execution begins

- Every program must have exactly one main function.
= “{" opening brace & “}" closing brace.

- printf(" "); is the only executable instruction.

- Cis case sensitive.

/*program to add two numbers*/

#include<stdio.h>

#define PI 3.14

Int a;

Void main()

{

Int a=10;

Float b,c;

Printf(“ENTER THE VALUE OF A:”)

scanf(“%d”,&a);

Printf(“enter the value of b:);

Scanf(“%f”,&b);

C=a+b;
Printf(“output=%f”,c);

}

Ctrl+f9

Enter the value of A:
67

[image: image7.jpg]Format of simple C program

main() /function name
{ /iStarting of program

/IProgram statements

} JEnd of program

The main() is a part of every C program. C permits different forms of
main statements

« main()
« int main()

« void main()

« main(void)

« void main(void)
« int main(void)

/*program to subtraction of two numbers*/

#include<stdio.h>

Void main()

{

Int a,b,c;

Printf(“ENTER THE VALUE OF A:\n”)

scanf(“%d”,&a);

Printf(“enter the value of b:\n”);

Scanf(“%f”,&b);

C=a-b;

Printf(“output=%f”,c);

}

Ctrl+f9
Basic structure of c program
[image: image8.png]Documentation section

Link section

Definition section

Global declaration section

main () Function section

{

Declaration part

Executable part

}

Subprogram section

Function 1

Function 2

(User defined functions)

Function n

1. Documentation section:

 The documentation section consists of a set of comment lines giving the name of the program, the author and other details, which the programmer would like to use later. These information give the program an identity and basic authority.

2. Link section: The link section provides instruction to the compiler to link or include the required in-built functions from the system library such as using the #include directive. This is important, because if we need to use any in-built system function we must first include the library in which the function has been defined.

3. Definition section: The definition section defines all symbolic constants using the #define directive. Having the constants being defined here, we can use them elsewhere in code.

4. Global declaration section: There are some variables that are used in more than one function; these variables are called global variables and are declared in this global declaration section which is outside the definition of any function This section also declares all the user-defined functions. As this global scope, these functions and variables can be used from definition of other functions.

5. main () function section: A C program must have one main function section in its structure. This section contains two parts; declaration part and executable part. However, the content of these two parts can be mixed.

1. Declaration part: The declaration part declares all the variables used in the executable part.

2. Executable part: There is at least one statement in the executable part. These two parts must appear between the opening and closing braces of the main function. The program execution begins at the opening brace and ends at the closing brace. The closing brace of the main function is the logical end of the program. All statements in the declaration and executable part end with a semicolon.

6. Subprogram section: If the program is a multi-function program then the subprogram section contains definition of all the user-defined functions which were declared earlier in the Definition Section. User-defined functions are generally placed immediately after the main () function, although they may appear in any order.
Programming style:
C programs are written in lowercase.uppercase are used only for symbolic constants

C is a free form language,we can group statements in one line.

a=b;

x=y+1;

z=a+x;

can be written in oneline a=b;x=y+1;z=a+x;

the program main()

{

printf(“hello c);

} may be written as main(){printf(“hello c”)};

EXECUTING A C PROGRAM

[image: image9.jpg]N

Executing a 'C’ Program.

Creating the program
comp

ng the program

Linking the program with functions that are
needed from the C library

Executing the program

Constants,variables and data types
Character Set
Letters, Digits,Special Characters,White spaces
Letters :

C language comprises the following set of letters to form a standard program. They are:

A to Z in Capital letters.

a to z in Small letters.

In C programming, small latter and caps latter are distinct.

Digits : C language comprises the following sequence of numbers to associate the letters. 0 to 9 digits.
Special characters:
	Symbol

	
Meaning

	 ~
	 Tilde

	 !
	Exclamation mark

	 #
	Number sign

	 $
	Dollar sign

	%
	Percent sign

	 ^
	Caret

	 &
	Ampersand

	 *
	Asterisk

	(
	Lest parenthesis

)
	Right parenthesis

	_
	Underscore

	 +
	Plus sign

	 |
	 Vertical bar

	 \
	 Backslash

	 `
	 Apostrophe

	 -
	 Minus sign

	 =
	 Equal to sign

	 {
	 Left brace

	 }
	 Right brace

	 [
	 Left bracket

]
	 Right bracket

	 :
	 Colon

	 "
	 Quotation mark

	 ;
	 Semicolon

	 <
	 Opening angle bracket

	 >
	 Closing angle bracket

	 ?
	 Question mark

	 ,
	 Comma

	 .
	Period

	 /
	 Slash

White spaces: blank space,horizontal tab,carriage return.new line,form feed
Trigraph sequence:c introduces the concept of “trigraph” sequence to provide a way to enter certain characters that are not available in some keywords:
For ex:if the keyboard does not support square bracket we can still use them in a program

As trigraph??

Trigraph sequence

??= #number sign

??(
 [left bracket

??)]right bracket

??< {left brace

??> }right brace

C tokens
[image: image10.jpg]

Keywords:float,while

Identifier:main,amount

Constants:-15.5

Strings:”ABC”
Special symbols:[],{}

operators:
keywords and identifiers

[image: image11.jpg]Every C word is classified as either a keyword or an identifier. All keywords have fixed
meanings and these meanings cannot be changed. Keywords serve as basic building blocks
for program statements. The list of all keywords of ANSI C are listed in Table 2.3. All key-
words must be written in lowercase. Some compilers may use additional keywords that must
be identified from the C manual.

099 adds some more keywords. Sce the Appendix "C99 Features”.
Tahle 2.3 ANSI C Keywords

auto double i z P
break else long switch
case enum register typedel
char . extern retum union
const float short unsigned
continue for signed void
default goto sizeof volatile

do it static while

Identifiers refer to the names of variables, functions and arrays. These are user-defined
names and consist of a sequence of letters and digits, with a letter as a first character. Both

[image: image12.jpg]UPPOITAne 20G IOWOITRED IOWOID Q19 PEMILeG, AUoUgn IOWeIcase iewers are commonly
used. The underscore character is also permitted in identifiers. It is usually used as a link
between two words in long identifiers.

Rules for Identifiers

First character must be an alphabet (or underscore).
Must consist of only letters, digits or underscore.
Only first 31 characters are significant.

Cannot use a keyword.

Must not contain white space.

EEE

[image: image13.jpg]An octal integer constant consists of any combination of digits from the set 0 through 7,
with a leading 0. Some examples of octal integer are:
037 0 0435 0551

A sequence of digits preceded by 0 or 0X is considered as hexadecimal integer. They may
also include alphabets A through F or a through f. The letter A through F represent the
numbers 10 through 15. Following are the examples of valid hex integers:

0X2 OxOF O0Xbed Ox

We rarely use octal and hexadecimal numbers in programming.

The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit
‘machines and 2,147,483,647 on 32-bit machines. It is also possible to store larger integer
constants on these machines by appending qualifiers such as U,L and UL to the constants.
Examples:

56789U or 56789u (unsigned integer)
987612347UL or 98761234ul (unsigned long integer)
9876543L or 98765431 (long integer)

float b;

b=6.78; .78 -8,.90

CONSTANTS

Constants in C refer to fixed values that do not change during the execution of program.C supports different types of constants

 Constants

 Numeric constant Character constant

 Integer Real Single

 String
 constant constant character constant constant

Integer constant:
Integer constants refer to sequence of digits.there are 3 types of integer namely
decimal integer,octal integer,hexadecimal integer

for ex: 123,-45,+79

octal integer example 037,551

hexadecimal integer example: 0X2,0x9F

[image: image14.jpg]Keal Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as
distances, heights, temperatures, prices, and so on. These quantities are represented by
numbers containing fractional parts like 17.548. Such numbers are called real (or floating
point) constants. Further examples of real constants are:

[image: image15.jpg]0.0083 -0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number followed by a
decimal point and the fractional part. It is possible to omit digits before the decimal point, or
digits after the decimal point. That is,

215. 95 =71 +5

are all valid real numbers.

A real number may also be expressed in exponential (or scientific) notation. For example,
the value 215.65 may be written as 2.1565¢2 in exponential notation. e2 means multiply by
10 The general form is:

qnnﬁm e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The expo-
nent is an integer number with an optional plus or minus sign. The letter e separating the
mantissa and the exponent can be written in either lowercase or uppercase. Since the expo-
nent causes the decimal point to “float”, this notation is said to represent a real number in
floating point form. Examples of legal floating-point constants are:

0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very
sma'l in magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -
0.000000368 is equivalent to —-3.68E-7.

Floating-point constants are normally represented as double-precision quantities. How-
ever, the suffixes f or F may be used to force single-precision and 1 or L to extend double
precision further.

Some examples of valid and invalid numeric constants are given in Table 2.4.

Table 2.4 Examples of Numeric Constants

Constant v Yald? Remarks,_

698354L Yes Represents long integer
25,000 No ‘Comma is not allowed
+5.0E3 Yes (ANSI C supports unary plus)
3.5e-5 Yes.

Tled No No white space i permitted
-4.5¢-2 Yes

L5E+2.5 No ‘Exponent must be an integer
5255 No S symbol is not permitted

0X7B Yes Hexadecimal integer

[image: image16.jpg]Singile Character Constants

A single character constant (or simply character constant) contains a single character en-
closed within a pair of single quote marks. Example of character constants are:

o e

[image: image17.jpg]Character constants have integer values known as ASCII values. For example, the state-
ment
printf("%d", 'a');
would print the number 97, the ASCII value of the letter a. Similarly, the statement
printf("sc”, '97');
would output the letter ‘a’. ASCII values for all characters are given in Appendix I1.
Since each character constant represents an integer value, it is also possible to perform
arithmetic operations on character constants. They are discussed in Chapter 8.

String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may
be letters, numbers, special characters and blank space. Examples are:

“Hello!™ *1987" “WELL DONE" “2...I" “5+3" “X™

Remember that a character constant (e.g., X)) is not equivalent to the single character
string constant (e.g., “X”). Further, a single character string constant does not have an
equivalent integer value while a character constant has an integer value. Character strings
are often used in programs to build meaningful programs. Manipulation of character strings
are considered in detail in Chapter 8.

Backslash Character Constants

C supports some special backslash character constants that are used in output functions. For
example, the symbol ‘\n’ stands for newline character. A list of such backslash character
constants is given in Table 2.5. Note that each one of them represents one character, al-
though they consist of two characters. These characters combinations are known as escape
sequences.

Table 2.5 Backslash Character Constants

Meaning
audible alert (bell)
back space
form feed.

new line
carriage retum
horizontal tab
vertical tab
single quote
double quote
fat ‘question mark
W backslash

a0 null

printf(“Output of this A is%d\t\\”,a); a/b

 printf(“Output of this B is%d”,b);

6

int A;

int i6;

int a,b,total,averagefgmnfmgnmfngmfngmfngmfngnfmngfmgnfmn;

int [image: image18.jpg]2.6| VARIABLES

A variable is a data name that may be used to store a data value. Unlike constants that
remain unchanged during the execution of a program, a variable may take different values
at different times during execution. In Chapter 1, we used several variables. For instance,
we used the variable amount in Sample Program 3 to store the value of money at the end of
each year (after adding the interest earned during that year).

Avariable name can be chosen by the programmer in a meaningful way o as to reflect its
function or nature in the program. Some examples of such names are:

Average
height

Total
Counter_1
class_strength

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_)
character, subject to the following conditions:
1. They must begin with a letter. Some systems permit underscore as the first character.
2. ANSI standard recognizes a length of 31 characters. However, length should not be
normally more than eight characters, since only the first eight characters are treated
as significant by many compilers. (In C99, at least 63 characters are significant.)
3. Uppercase and lowercase are significant. That is, the varible Total is not the same as
total or TOTAL.
4. It should not be a keyword.
5. White space is not allowed.
Some examples of valid variable names are:

John Value T_raise

Delhi x1 ph_value

mark suml distance
Invalid examples include:

123 (area)

% 25th

Further examples of variable names and their correctness are given in Table 2.6.

Table 2.6 Examples of Variable Names

Variable name Valid? Remark

First_tag Valid

char Notvalid char is a keyword

Prices Notvalid Dollar sign s illegal

group one Not valid Blank space is not permitted
average_number Valid First eight characters are significant

int_type Valid Keyword may be part of a name.

[image: image19.jpg]If only the first eight characters are recognized by a compiler, then the two names

average_height
average_weight

mean the same thing to the computer. Such names can be rewritten as
d avg_height and avg weight
or
ht_average and wt_average
without changing their meanings.

2.7| DATA TYPES

C language is rich in its data types. Storage representations and machine instructions to
handle constants differ from machine to machine. The variety of data types available allow
the programmer to select the type appropriate to the needs of the application as well as the
machine.

ANSI C supports three classes of data types:

1. Primary (or fundamental) data types

2. Derived data types

3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-de-
fined data types are defined in the next section while the derived data types such as arrays,
functions, structures and pointers are discussed as and when they are encountered.

All C compilers support five fundamental data types, namely integer (int), character

(char), floating point (float), double-precision floating point (double) and void. Many of
hor slne il srtonded duts tvnes such o losie tit anid Yo dovbls. Tarioos duth trued

[image: image20.jpg]PRIMARY DATA TYPES
| Integral Type J
‘ Integer R .
|
signed unsigned type oher |
| int unsigned int signed char |
[1] snorint nbgred s ok wnsignedehar | |
‘ || tongint unsigned long int ‘ |
| Floating point Type I
[foat | double Long double| |
il

'Fig. 2.4 Primary data types in C

Table 2.7 Size and Range of Basic Data Types on |6-bit Machines

Dada type 150 5o “Range of values
char —128t0 127
int -32,7681032,767
float 3.4e-38t03.4ete38
double 1.7¢-308 o 1.7e+308
Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Gen-
erally, integers occupy one word of storage, and since the word sizes of machines vary (typi-
cally, 16 or 32 bits) the size of an integer that can be stored depends on the computer. If we
use a 16 bit word length, the size of the integer value is limited to the range ~32768 to +32767
(that is, ~21° to +21°_1). A signed integer uses one bit for sign and 15 bits for the magnitude
of the number. Similarly, a 32 bit word length can store an integer ranging from -
2,147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has three
classes of integer storage, namely short int, int, and long int, in both signed and un-
signed forms. ANSI C defines these types so that they can be organized from the smallest to
the largest, as shown in Fig. 2.5. For example, short int represents fairly small integer
values and requires half the amount of storage as a regular int number uses. Unlike signed

[image: image21.jpg]R R e - 1™
integers, unsigned integers use all the bits for the magnitude of the number and are always

positive. Therefore, for a 16 bit machine, the range of unsigned integer numbers will be from
0 to 65,535.

Fig. 2.5 Integer types

We declare long and unsigned integers to increase the range of values. The use of quali-
fier signed on integers is optional because the default declaration assumes a signed number.
Table 2.8 shows all the allowed combinations of basic types and qualifiers and their size and
range on a 16-bit machine.

©99 allows long long integer types. Seo the Appendix “C99 Features”.

Table 2.8 Size and Range of Data Types on a | 6-bit Machine

Type Size (bits) Range -
char or signed char 8 ~12810127
unsigned char 8 010255
intor signed int 16 32,768 10 32,767
unsigned int 16 01065535
shortintor
signed short int 8 —12810127
unsigned short int 8 010255
longintor
signed long int 2 -2,147,483,648 10 2,147,483,647
unsigned long int 32 0104,294,967,295
float 32 34E-38103.4E+38
double 64 1.7E-308 to 1.7E+ 308
long double 80 34E-493210 11E+4932
Floating Point Types

Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with
6 digits of precision. Floating point numbers are defined in C by the keyword float. When
the accuracy provided by a float number is not sufficient, the type double can be used to
define the number. A double data type number uses 64 bits giving a precision of 14 digits.
These are known as double precision numbers. Remember that double type represents the
same data type that float represents, but with a greater precision. To extend the precision
further, we may use long double which uses 80 bits. The relationship among floating types
is Mustrated in Fie 2 6.

[image: image22.jpg]Void Types

The void type has no values. This is usually used to specify the type of functions. The type of
a function is said to be void when it does not return any value to the calling function. It can
also play the role of a generic type, meaning that it can represent any of the other standard
types.

Character Types

A single character can be defined as a character(char) type data. Characters are usually
stored in 8 bits (one byte) of internal storage. The qualifier signed or unsigned may be
explicitly applied to char. While unsigned chars have values between 0 and 255, signed
chars have values from —128 to 127.

2.8] DECLARATION OF VARIABLES

After designing suitable variable names, we must declare them to the compiler. Declaration
does two things:

1. It tells the compiler what the variable name is.

2. Tt specifies what type of data the variable will hold.
The declaration of variables must be done before they are used in the program.

Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do
with its type. The syntax for declaring a variable is as follows:

data-type v1,v2,..

v1,v2,vn are the names of variables. Variables are separated by commas. A declaration
statement must end with a semicolon. For example, valid declarations are:

int count;
int number, total;
double ratio;

int and double are the keywords to represent integer type and real type data values respec-
tively. Table 2.9 shows various data types and their keyword equivalents.

[image: image23.jpg]Constants, Variables; and Data Types —————————————{ 35

Table 2.9 Data Types and Their Keywords

Datatype.
Character

Unsigned character
Signed character
Signed integer
Signed short integer

Signed long integer

Unsigned integer
Unsigned short integer

Unsigned long integer

Floating point
Double-precision

floating point

Extended double-precision
floating point

Keywor
char
unsigned char

signed char

signed int (or int)

signed short int

(or short int or short)
signed long int

(or long int or long)
unsigned int (or unsigned)
unsigned short int

(or unsigned short)
unsigned long int

(or unsigned long)

float

double

long double

The program segment given in Fig. 2.7 illustrates declaration of variables. main() is the
beginning of the program. The opening brace { signals the execution of the program. Decla-
ration of variables is usually done immediately after the opening brace of the program. The
variables can also be declared outside (either before or after) the main function. The impor-
tance of place of declaration will be dealt in detail later while discussing functions.

Note: C99 permits declaration of variables at any point within a function or block, prior to their use.

float
int

short int
Tong int
double
unsigned

char

X, Y3
cod
count;
amount;
deviation;

[image: image24.jpg]‘When an adjective (qualifier) short, long, or unsigned is used without a basic data type
specifier, C compilers treat the data type as an int. If we want to declare a character variable
as unsigned, then we must do so using both the terms like unsigned char.

Default values of Constants

Integer constants, by default, represent int type data. We can override this default
by specifying unsigned or long after the number (by appending U or L) as shown

below:
Literal Type Value
+1M int m
-222 int
45678U unsigned int
-56789L long int
987654UL unsigned long int

Similarly, floating point constants, by default represent double type data. If we
want the resulting data type to be float or long double, we must append the letter f
or F 1o the number for float and letter | or L for long double as shown below:

Literal Type Value

0. double 0.0

0 double 0.0

12.0 double 12.0

1.234 double 1.239
-1.2f float -1.2
1.23456789L long double 1.23456789

User-Defined Type Declaration

C supports a feature known as “type definition” that allows users to define an identifier that
would represent an existing data type. The user-defined data type identifier can later be
used to declare variables . It takes the general form:

Where type refers to an existing data type and “identifier” refers to the “new” name given to
the data type. The existing data type may belong to any class of type, including the user-
defined ones. Remember that the new type is ‘new’ only in name, but not the data type.
typedef cannot create a new type. Some examples of type definition are:

typedef int units;

typedef float marks;

Here, units symbolizes int and marks symbolizes float. They can be later used to declare

variables as follows:

units batchl, batch2;
marks namel[50], name2[50];

[image: image25.jpg]batchl and batchs are inclared as 1nt variable and namel|oU] and namexs|oU] are declared as
50 element floating point array variables. The main advantage of typedef is that we can
create meaningful data type names for increasing the readability of the program.

Another user-defined data type is enumerated data type provided by ANSI standard. It is
defined as follows:

nups identifier (valuel; values, o ettt

The “identifier” is a user-defined enumerated data type which can be used to declare vari-

ables that can have one of the values enclosed within the braces (known as enumeration

constants). After this definition, we can declare variables to be of this ‘new” type as below:
enum identifier vi, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values valuel, value2, ...

valuen. The assignments of the following types are valid:

V1 - valued;

V5 = valuel;

An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week st, week_end;

week st = Monday}

week“end = Friday;

if(week st == Tuesday)

week_end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration
constants. That is, the enumeration constant valuel is assigned 0, value2 is assigned 1, and
s0 on. However, the automatic assignments can be overridden by assigning values explicitly
to the enumeration constants. For example:

enum day {Monday = 1, Tuesday, ... Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are as-
signed values that increase successively by 1.

The definition and declaration of enumerated variables can be combined in one statement.
Example:

enum day {Monday, ... Sunday) week st, week_end;

29| DECLARATION OF STORAGE CLASS

Variables in C can have not only data type but also storage class that provides information
about their location and visibility. The storage class decides the portion of the program
within which the variables are recognized. Consider the following example:
/* Example of storage classes */
int m;
main()
{

int i3
float balance;

[image: image26.jpg]function1();
{unctianl()

int i;
float sum;

)

The variable m which has been declared before the main is called global variable. It can
be used in all the functions in the program. It need not be declared in other functions. A
global variable is also known as an external variable.

The variables i, balance and sum are called local variables because they are declared
inside a function. Local variables are visible and meaningful only inside the functions in
which they are declared. They are not known to other functions. Note that the variable i has
been declared in both the functions. Any change in the value of i in one function does not
affect its value in the other.

C provides a variety of storage class specifiers that can be used to declare explicitly the
scope and lifetime of variables. The concepts of scope and lifetime are important only in
multifunction and multiple file programs and therefore the storage classes are considered in
detail later when functions are discussed. For now, remember that there are four storage
class specifiers (auto, register, static, and extern) whose meanings are given in Table
2.10.

The storage class is another qualifier (like long or unsigned) that can be added to a
variable declaration as shown below:

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic
(auto) variables contain undefined values (known as ‘garbage’) unless they are initialized
explicitly.

Table 2.10 Storage Classes and Their Meaning

Storage class. Meaning

auto Local variable known only to the function in which itis declared. Default is auto.

static Local variable which exists and retains its value even after the control is transferred to
the calling function.

extern Global variable known toall functions in the file.

register Local variable which is stored in the register.

[2.10] ASSIGNING VALUES TO VARIABLES

Variables are created for use in program statements such as,

[image: image27.jpg]value = amount + inrate * amount;
while (year <= PERIOD)
{

year = year + 1;

In the first statement, the numeric value stored in the variable inrate is multiplied by the
value stored in amount and the product is added to amount. The result is stored in the
variable value. This process is possible only if the variables amount and inrate have already
been given values. The variable value is called the target variable. While all the variables
are declared for their type, the variables that are used in expressions (on the right side of
equal (=) sign of a computational statement) must be assigned values before they are encoun-
tered in the program. Similarly, the variable year and the symbolic constant PERIOD in
the while statement must be assigned values before this statement is encountered.

Assignment Statement
Values can be assigned to variables using the assignment operator = as follows:

variable_name = constan
We have already used such statements in Chapter 1. Further examples are:

initial_value = 0;
final_value = 100;
balance = 75.80;
yes =%k

C permits multiple assignments in one line. For example
initial_value = 0; final_value = 100;

are valid statements.
An assignment statement implies that the value of the variable on the left of the ‘equal
sign’ is set equal to the value of the quantity (or the expression) on the right. The statement
year = year + 1;
means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.
During assignment operation, C converts the type of value on the right-hand side to the
type on the left. This may involve truncation when real value is converted to an integer.
Tt is also possible to assign a value to a variable at the time the variable is declared. This
takes the following form:

data-type variable_name = constant;

Some examples are:
int final_value = 100;
char yes =%’
double balance = 75.84;

[image: image28.jpg]The process of giving initial values to variables is called initialization. C permits the ini-
tialization of more than one variables in one statement using multiple assignment operators.
For example the statements

peqg=s=0;

X=y =z MK
are valid. The first statement initializes the variables p, q, and s to zero while the second
initializes x, y, and z with MAX. Note that MAX is a symbolic constant defined at the begin-
ning.

[image: image29.jpg]Program

I

/*..

P

.......... DECEARATIONS! <. vovsssusnansmnssonssssadh]
float x,p 3
double y,q ;
unsigned k ;

.......... DECLARATIONS AND ASSIGNMENTS............*/
int m = 54321 ;
Tong int n = 1234567890 ;
.ASSIGNMENTS. .

1.234567890000 ;
.87654321 ;

o x< x

[image: image30.jpg]Reading Data from Keyboard

Another way of giving values to variables is to input data through keyboard using the seanf
function. It is a general input function available in C and is very similar in concept to the
printf function. It works much like an INPUT statement in BASIC. The general format of
scanf is as follows:

scanf(“control string”, &variablel,&variable2,....);

The control string contains the format of data being received. The ampersand symbol &

before each variable name is an operator that specifies the variable name’s address. We must

always use this operator, otherwise unexpected results may occur. Let us look at an exam-
le:

= scanf("5d", &number);

When this statement is encountered by the computer, the execution stops and waits for
the value of the variable number to be typed in. Since the control string “%d” specifies that
an integer value is to be read from the terminal, we have to type in the value in integer form.
Once the number is typed in and the ‘Return’ Key is pressed, the computer then proceeds to
the next statement. Thus, the use of scanf provides an interactive feature and makes the
program ‘user friendly’. The value is assigned to the variable number.

[image: image31.jpg]Program
main()

{

int number;

printf(*Enter an integer number\n");
scanf ("%d", &number);

if (number < 100)

printf("Your number is smaller than 100\n\n
else

printf("Your number contains more than two digits\n"

[image: image32.jpg][2541] DEFINING SYMBOLIC CONSTANTS

We often use certain unique constants in a program. These constants may appear repeatedly
in a number of places in the program. One example of such a constant is 3.142, representing
the value of the mathematical constant “pi”. Another example is the total number of stu-
dents whose mark-sheets are analysed by a ‘test analysis program’. The number of students,
say 50, may be used for calculating the class total, class average, standard deviation, etc. We
face two problems in the subsequent use of such programs. These are

1. problem in modification of the program and

2. problem in understanding the program.

Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of
calculations or the number 50 to 100 to process the test results of another class. In both the
cases, we will have to search throughout the program and explicitly change the value of the
constant wherever it has been used. If any value is left unchanged, the program may pro-
duce disastrous outputs.

Understandability

When a numeric value appears in a program, its use is not always clear, especially when the
same value means different things in different places. For example, the number 50 may
mean the number of students at one place and the ‘pass marks’ at another place of the same
program. We may forget what a certain number meant, when we read the program some
days later.

‘Assignment of such constants to a symbolic name frees us from these problems. For exam-
ple, we may use the name STRENGTH to define the number of students and PASS_MARK
to define the pass marks required in a subject. Constant values are assigned to these names
at the beginning of the program. Subsequent use of the names STRENGTH and
PASS_MARK in the program has the effect of causing their defined values to be automati-
cally substituted at the appropriate points. A constant is defined as follows:

#define symbolic-name value of constant

Valid examples of constant definitions are:
#define STRENGTH 100
#define PASS MARK 50
#define MAX 200
#define PI 3.14159
Symbolic names are sometimes called constant identifiers. Since the symbolic names are
constants (not variables), they do not appear in declarations. The following rules apply to a
#define statement which define a symbolic constant:

 const int a=10,b=5;
a=a+b;
[image: image33.jpg]1. Symbolic names have the same form as variable names. (Symbolic names are written
in CAPITALS to visually distinguish them from the normal variable names, which are
‘written in lowercase letters. This is only a convention, not a rule.)

2. No blank space between the pound sign 4’ and the word define is permitted.

3. “’ must be the first character in the line.

4. Ablank space is required between #define and symbolic name and between the sym-
bolic name and the constant.

5. #define statements must not end with a semicolon.

6. After definition, the symbolic name should not be assigned any other value within the
program by using an assignment statement. For example, STRENGTH = 200; is ille-
gal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of
constant.

8. #define statements may appear anywhere in the program but before it is referenced
in the program (the usual practice is to place them in the beginning of the program).
#define statement is a preprocessor compiler directive and is much more powerful than
what has been mentioned here. More advanced types of definitions will be discussed later.
Table 2.11 illustrates some invalid statements of #define.

Table 2.1 Examples of Invalid #define Statements

. Statement. Validity. Remark # iR
#define X =2.5 Invalid ign s not allowed
#define MAX 10 Invalid No white space between # and define
#define N 25; Invalid No semicolon at the end
#define N 5,M 10 Tnvalid A statement can define only one name.
#Define ARRAY 11 Invalid define should be in lowercase letters
#define PRICES 100 Invalid $ symbol is not permitted in name

[212] DECLARING A VARIABLE AS CONSTANT

We may like the value of certain variables to remain constant during the execution of a
program. We can achieve this by declaring the variable with the qualifier const at the time
of initialization. Example:

const int class_size = 40;
const is a new data type qualifier defined by ANSI standard. This tells the compiler that the
value of the int variable class_size must not be modified by the program. However, it can be
used on the right_hand side of an assignment statement like any other variable.

{2.13| DECLARING A VARIABLE AS VOLATILE

ANSI standard defines another qualifier volatile that could be used to tell explicitly the
compiler that a variable’s value may be changed at any time by some external sources (from
outside the program). For example:

volatile int date;

[image: image34.jpg]The value of date may be altered by some external factors even if it does not appear on the
left-hand side of an assignment statement. When we declare a variable as volatile, the
compiler will examine the value of the variable each time it is encountered to see whether
any external alteration has changed the value.

Remember that the value of a variable declared as volatile can be modified by its own
program as well. If we wish that the value must not be modified by the program while it may
be altered by some other process, then we may declare the variable as both const and vola-
tile as shown below:

vnlatile eonct int loratian = 100

[image: image35.jpg]2.14| OVERFLOW AND UNDERFLOW OF DATA

Problem of data overflow occurs when the value of a variable is either t0o big or too small for
the data type to hold. The largest value that a variable can hold also depends on the ma-
chine. Since floating-point values are rounded off to the number of significant digits allowed
(or specified), an overflow normally results in the largest possible real value, whereas an
underflow results in zero.

Integers are always exact within the limits of the range of the integral data types used.
However, an overflow which is a serious problem may oceur if the data type does not match
the value of the constant. C does not provide any warning or indication of integer overflow.
It simply gives incorrect results. (Overflow normally produces a negative number.) We
should therefore exercise a greater care to define correct data types for handling the input/
output values.

[image: image36.jpg]B

B B BB BRBRR B

Do not use the underscore as the first character of identifiers (or variable
names) because many of the identifiers in the system library start with
underscore.

Use only 31 or less characters for identifiers. This helps ensure portability
of programs.

Do not use keywords or any system library names for identifiers.

Use meaningful and intelligent variable names.

Do not create variable names that differ only by one or two letters.

Each variable used must be declared for its type at the beginning of the
program or function.

All variables must be initialized before they are used in the program.
Integer constants, by default, assume int types. To make the numbers
Iong or unsigned, we must append the letters L and U to them.
Floating point constants default to double. To make them to denote float
or long double, we must append the letfers F or L to the numbers.

Do not use lowercase | for long as it is usually confused with the number 1.

[image: image37.jpg]R B B

® B BBRBR

Use single quote for character constants and double quotes for string con-
stants.

A character is stored as an integer. It is therefore possible to perform arith-
metic operations on characters.

Do not combine declarations with executable statements.

A variable can be made constant either by using the preprocessor com-
‘mand #define at the beginning of the program or by declaring it with the
qualifier const at the time of initialization.

Do not use semicolon at the end of #define directive.

The character # should be in the first column.

Do not give any space between # and define.

C does not provide any warning or indication of overflow. It simply gives
incorrect results. Care should be exercised in defining correct data type.
A variable defined before the main function is available to all the functions
in the program.

A variable defined inside a function is local to that function and not avail-
able to other functions.

operators and expressions
[image: image38.jpg]R

C operators can be classified into a number of categories. They include:

. Arithmetic operators

Relational operators

Logical operators

Assignment operators

Increment and decrement operators

. Conditional operators
. Bitwise operators
. Snecial eperators

[image: image39.jpg]3.2| ARITHMETIC OPERATORS

C provides all the basic arithmetic operators. They are listed in Table 3.1. The operators +, —
,*, and / all work the same way as they do in other languages. These can operate on any
built-in data type allowed in C. The unary minus operator, in effect, multiplies its single
operand by —1. Therefore, a number preceded by a minus sign changes its sign.

[image: image40.jpg]Operator: Meaning

Addition or unary plus
Subtraction or unary minus
Multiplication

Division

Modulo division

%

Integer division truncates any fractional part. The modulo division operation produces
the remainder of an integer division. Examples of use of arithmetic operators are:

a-b a+b

a*b alb

a%b -a*b

[image: image41.jpg]Here a and b are variables and are known as operands. The modulo division operator %
cannot be used on floating point data. Note that C does not have an operator for
exponentiation. Older versions of C does not support unary plus but ANSI C supports it.

[image: image42.jpg]Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the
expression is called an integer expression, and the operation is called integer arithmetic.
Integer arithmetic always yields an integer value. The largest integer value depends on the
machine, as pointed out earlier. In the above examples, if a and b are integers, then for a =
14 and b = 4 we have the following results:

a-b = 10

a+b = 18

a*b = 56

a/b = 3 (decimal part truncated)
a%b = 2 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated
towards zero. If one of them is negative, the direction of trunction is implementation
dependent. That is,

6/7=0and-6/-7=0
but ~6/7 may be zero or ~1. (Machine dependent)

Similarly, during modulo division, the sign of the result is always the sign of the first
operand (the dividend). That is

-14%3 = -2
-14%-3 = -2
14%-3 = 2

a=4;

b=5;

a==b

AND (&&)

OR(||) PIPE SYMBOL

NOT !

 A B A AND B A OR B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

A NOT

0 1

1 0

a=2 ,b=3,x=10,c=1,d=4

!a+b

if(a>b&&x==10)

printf(“value is correct”);

else

printf(“value is not correct”);

[image: image43.jpg]Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand
may assume values either in decimal or exponential notation. Since floating point values are
rounded to the number of significant digits permissible, the final value is an approximation
of the correct result. If x, y, and z are floats, then we will have:

x=6.0/7.0 = 0.857143

y=1.0/3.0= 0333333
-2.0/3.0 = ~0.666667
The operator % cannot be used with real operands.

[image: image44.jpg]Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-
mode arithmetic expression. If either operand is of the real type, then only the real operation
is performed and the result is always a real number. Thus

15/10.0=15
‘whereas

15/10=1

More about mixed operations will be discussed later when we deal with the evaluation of
expressions.

3.3 RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For
example, we may compare the age of two persons, or the price of two items, and so on. These
comparisons can be done with the help of relational operators. We have already used the
symbol ‘<, meaning ‘less than’. An expression such as

a<borl<20

containing a relational operator is termed as a relational expression. The value of a relational
expression is either one or zero. It is one if the specified relation is true and zero if the
relation is false. For example

10<20 s true
but
20 <10 s false
C supports six relational operators in all. These operators and their meanings are shown
in Table 3.2.

Table 3.2 Relational Operators

Operator Meaning.

< is Tess than

- is less than or equal to

> is greater than

>= is greater than or equal to
- is equal to

> is not equal to

A simple relational expression contains only one relational operator and takes the
following form:

[image: image45.jpg]ae-1 relational operator ae-2
ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or

combination of them. Given below are some examples of simple relational expressions and
their values:

4.5 <= 10 TRUE
4.5 <-10 FALSE
—-35>= 0 FALSE
10 < 7+5 TRUE
a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of
candd.
When arithmetic expressions are used on either side of a relational operator, the

arithmetic expressions will be evaluated first and then the results compared. That is,
e el e e e o SURR L e e B RR e e

[image: image46.jpg]Relational Operato

Among the six relational operators, each one is a complement of another operator.

& is complement of <=
< is complement of >=
- is complement of I~

We can simplify an expression involving the not and the fess than operators
using the complements as shown below:

Actual one Simplified one
lx<y) X >=y
1x>y) X <=y
1xt=y) X =y
x<=y) x>y

x> =y) x<y

fx == y) xl=y

[image: image47.jpg]3.4| LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.
&& meaning logical AND
|| meaning logical OR
! meaning logical NOT
The logical operators && and | | are used when we want to test more than one condition
and make decisions. An example is:
a>b&&x=10
An expression of this kind, which combines two or more relational expressions, is termed
as a logical expression or a compound relational expression. Like the simple relational
expressions, a logical expression also yields a value of one or zero, according to the truth
table shown in Table 3.3. The logical expression given above is true only if a > b is true and
x == 10 is true. If either (or both) of them are false, the expression is false.

Table 3.3 Truth Table

Value of the éxpression

op-1 op2 %
op-1 && op-2 op-11l0p-2

Nonzero Non-zero 1 1

Non-zero 0 0 1

) Non-zero 0 1

0 0 0 0

Some examples of the usage of logical expressions are:
1. if (age > 55 && salary < 1000)
2. if (number < 0 | | number > 100)
We shall see more of them when we discuss decision statements.
NOTE: Relative precedence of the relational and logical operators is as follows:

Highest !

Lowest 1l
It is important to remember this when we use these operators in compound expressions.

3.5| ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable. We have
seen the usual assignment operator, ‘=". In addition, C has a set of ‘shorthand’ assignment
operators of the form

v op= exp; int a=10; b=b-4;
b-=4;
v-variable,exp=expression we can assign
v=v op(exp),x=x+(y+1)the shortant operator+= can also be used.
X+=3 i.e x=x+3
y-=7
The shorthand operator has many advantages:

1.what appears in left hand side need not be repeated.

2.statement is more concise and easier to read.

3.statement is more efficient.

a=5; c=4

a=a+1; c=c-1

a= 1 0 1 1

b=1 1 0 1

a&b= 1 0 0 1 bitwise and

a|b=1 1 1 1 bitwise OR

a^b=0 1 1 0 bitwise Ex-OR

[image: image48.jpg]3.6] INCREMENT AND DECREMENT OPERATORS

C allows two very useful operators not generally found in other languages. These are the
increment and decrement operators:

++ and, -—
The operator ++ adds 1 to the operand, while —— subtracts 1. Both are unary operators and
takes the following form:

[image: image49.jpg]4HI OF mb+s
=3 oF m-

++m; is equivalent to m = m+l; (or m += 1;)
—-m; is equivalent to m = m-1; (or m —= 1;)
We use the increment and decrement statements in for and while loops extensively.
While ++m and m++ mean the same thing when they form statements independently,

they behave differently when they are used in expressions on the right-hand side of an
assignment statement. Consider the following:

m=5;
y = g
In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements
as
m = 5;
y = mH
then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand
and then the result is assigned to the variable on left. On the other hand, a postfix operator
first assigns the value to the variable on left and then increments the operand.
Similar is the case, when we use ++ (or — -) in subscripted variables. That is, the statement,
afi++] = 10;
is equivalent to
a[il = 10;
1= i
‘The increment and decrement operators can be used in complex statements. Example:
m = ner —j+10;
Old value of n is used in evaluating the expression. n is incremented after the evaluation.
Some compilers require a space on either side of n++ or ++n.

Rules for + + and — — Operators

o Increment and decrement operators are unary operators and they require
variable as their operands.

 When postfix ++ (or —-) is used with a variable in an expression, the
expression is evaluated first using the original value of the variable and then
the variable is incremented (or decremented) by one.

« When prefix ++(or - -) is used in an expression, the variable is incremented
(or decremented) first and then the expression is evaluated using the new
value of the variable.

« The precedence and associatively of ++ and — — operators are the same as
those of unary + and unary

[image: image50.jpg][37] CONDITIONAL OPERATOR
A ternary operator pair “? " is available in C to construct conditional expressions of the form
expl ? exp2 : exp3
where expl, exp2, and exp3 are expressions.
The operator ? : works as follows: expl is evaluated first. If it is nonzero (true), then the
expression exp? is evaluated and becomes the value of the expression. If exp1 is false, exp3 is
evaluated and its value becomes the value of the expression. Note that only one of the

expressions (either exp2 or exp3) is evaluated. For example, consider the following
statements.

a = 10;
b = 15;
x={a>b) 2a:bhs
In this example, x will be assigned the value of b. This can be achieved using the if..else
statements as follows:
if (a > b)
x=a;
else
x = b;

3.8) BITWISE OPERATORS

C has a distinction of supporting special operators known as bitwise operators for manipula-
tion of data at bit level. These operators are used for testing the bits, or shifting them right
or left. Bitwise operators may not be applied to float or double. Table 3.5 lists the bitwise
operators and their meanings. They are discussed in detail in Appendix I

Table 3.5 Bitwise Operators

Operator z Meaning i
& bitwise AND
| bitwise OR
~ bitwise exclusive OR
<< shiftleft
> shift right

3.9| SPECIAL OPERATORS

C supports some special operators of interest such as comma operator, sizeof operator,
pointer operators (& and *) and member selection operators (. and —>). The comma and
sizeof operators are discussed in this section while the pointer operators are discussed in

int a=1000,b=5.78,c=90;

float c,g,h,y;

x=sizeof(a);
[image: image51.jpg]The Comma Operator
The comma operator can be used to link the related expressions together. A comma-linked
list of expressions are evaluated left to right and the value of right-most expression is the
value of the combined expression. For example, the statement
value = (x = 10, y = 5, x#y);

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10 + 5) to value.
Since comma operator has the lowest precedence of all operators, the parentheses are
necessary. Some applications of comma operator are:

In for loops:

for (n =1, m=10, n <=m; n++, m++)
In while loops:
while (c = getchar(), ¢ t= '10')
Exchanging values:

The sizeof Operator
The sizeof is a compile time operator and, when used with an operand, it returns the number
of bytes the operand occupies. The operand may be a variable, a constant or a data type
qualifier.
Examples: m = sizeof (sum);

n = sizeof (long int);

k= sizeof (235L);

The sizeof operator is normally used to determine the lengths of arrays and structures

when their sizes are not known to the programmer. It is also used to allocate memory space
dynamically to variables during execution of a program.

[image: image52.jpg]3.10| ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of variables, constants, and operators arranged as
per the syntax of the language. We have used a number of simple expressions in the examples
discussed so far. C can handle any complex mathematical expressions. Some of the examples

[image: image53.jpg]hirae et il s s

“Algebraic expression

axb-c
(mtn) (xty)

)

3P +2x+

6

Cexpression
a*b-c
(m+n) * (x+y)
asble

Iextx+2%x+1

xyte

[31] EVALUATION OF EXPRESSIONS

Expressions are evaluated using an assignment statement of the form:

Variable is any valid C variable name. When the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left-
hand side. All variables used in the expression must be assigned values before evaluation is
attempted. Examples of evaluation statements are

z=a-b/c+d

The blank space around an operator is optional and adds only to improve readability.
When these statements are used in a program, the variables a, b, ¢, and d must be defined

before they are used in the expressions.

[image: image54.jpg][3:12] PRECEDENCE OF ARITHMETIC OPERATORS

An arithmetic expression without parentheses will be evaluated from left to right using the
rules of precedence of operators. There are two distinct priority levels of arithmetic operators
in C:

High priority * / %

Low priority +—

The basic evaluation procedure includes ‘two’ left-to-right passes through the expression.
During the first pass, the high priority operators (if any) are applied as they are encountered.
During the second pass, the low priority operators Gf any) are applied as they are
encountered. Consider the following evaluation statement that has been used in the program
of Fig. 3.4.

x =a-b/3 + c*2-1
When a=9,b =12, and c = 3, the statement becomes
X=9-12/3 +3*2-1
and is evaluated as follows
First pass
Stepl: x = 9-44+3%2-1
Step2: x = 9-44+6-1

[image: image55.jpg]Second pass
Step3: x = 5+6-1
Stepd: x = 11-1
Steps5: x = 10

These steps are illustrated in Fig. 3.5. The numbers inside parentheses refer to step num-
bers.

Fig. 3.5 lllustration of hierarchy of operatioris

However, the order of evaluation can be changed by introducing parentheses into an ex-
pression. Consider the same expression with parentheses as shown below:

9-12/(3+3)*(2-1)

Whenever parentheses are used, the expressions within parentheses assume highest pri-
ority. If two or more sets of parentheses appear one after another as shown above, the ex-
pression contained in the left-most set is evaluated first and the right-most in the last. Given
below are the new steps.

First pass
Stepl: 9-12/6 * (2-1)
Step2: 9-12/6 * 1
Second pass
Step: 92 % 1
Step4: 9-2
Third pass

Step5: 7
This time, the procedure consists of three left-to-right passes. However, the number of
evaluation steps remains the same as 5 (i.e equal to the number of arithmetic operators).

[image: image56.jpg]Parentheses may be nested, and in such cases, evaluation of the expression will proceed
outward from the innermost set of parentheses. Just make sure that every opening
parenthesis has a matching closing parenthesis. For example

9-(12/(3+3)*2)-1=4
whereas

9-(123)+3%2)=1=-2
While parentheses allow us to change the order of priority, we may also use them to

improve understandability of the program. When in doubt, we can always add an extra pair
just to make sure that the priority assumed is the one we require.

Rules for Evaluation of Expression

« First, parenthesized sub expression from left to right are evaluated.

If parentheses are nested, the evaluation begins with the innermost sub-expres-
sion

The precedence rule is applied in determining the order of application of op-
erators in evaluating sub-expressions

The associativity rule is applied when two or more operators of the same prec-
edence level appear in a sub-expression.

Arithmetic expressions are evaluated from left to right using the rules of
precedence.

When parentheses are used, the expressions within parentheses assume highest
priority.

3.13] SOME COMPUTATIONAL PROBLEMS

When expressions include real values, then it is important to take necessary precautions to
guard against certain computational errors. We know that the computer gives approximate
values for real numbers and the errors due to such approximations may lead to serious
problems. For example, consider the following statements:

a=1.0/3.0;

b=a*3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b
computed in a program will equal 1.

Another problem is division by zero. On most computers, any attempt to divide a number
by zero will result in abnormal termination of the program. In some cases such a division
‘may produce meaningless results. Care should be taken to test the denominator that is likely
to assume zero value and avoid any division by zero.

The third problem is to avoid overflow or underflow errors.it is our responsibility to guarantee that operands are of the correct type and range,and the result may not produce any overflow or underflow.

[image: image57.jpg]3.14 TYPE CONVERSIONS IN EXPRESSIONS p /-L’)

Implicit Type Conversion

C permits mixing of constants and variables of different types in an expression. C automatically converts
any intermediate values to the proper type so that the expression can be evaluated without loosing any
significance. This automatic conversion is known as implicit type conversion.

During evaluation it adheres to very strict rules of type conversion. If the operands are of different
types, the ‘lower’ type is automatically converted to the ‘higher’ type before the operation proceeds. Tho
result is of the higher type. A typical type conversion process is illustrated in Fig. 3.8

Tong

Fig. 3.8 Process of implicit type conversion

Given below is the sequence of rules that are applied while evaluating expressions.

All short and char are automatically converted to int; then

1. if one of the operands is long double, the other will be converted to long double il
will be long doub!

2. else, if one of the operands is doub!
doubl

3. else, if one of the operands is float, the other will be converted to float and the renul.

else, if one of the operands is unsigned long int, the other will be converted to

int and the result will be unsigned long int;

5. else, if one of the operands is long int and the other is unsigned int, then

[image: image58.jpg]6. else. if one of 1
be long int:

7- else. if one of the operands is unsigned int, the other will be cc
result will be unsigned int.

Conversion
Hierarchy —

-point ope
variable c
the following changes are

nverted to the type of the
the value to it. However.

float to int truncates the fractional part

double to float causes rounding of digits

long int to int causes dropping of excess higher order bits.
Explicit conversion:

we want to force a type conversion ina way that is different from automatic conversion

for ex:ratio=female-number/male-number.
both female-number and male-number is declared as integers.the decimal of theresult
oFthe divisionwould be lostand ratio would represent a wrong figure.the problem could be solved by
ratio-(float)female-number/male-number
[image: image59.jpg]The operator (float) converts the female_number to floating point for the purpose of
evaluation of the expression. Then using the rule of automatic conversion, the division is
performed in floating point mode, thus retaining the fractional part of result.

Note that in no way does the operator (float) affect the value of the variable female
number. And also, the type of female number remains as int in the other parts of the
program.

The process of such a local conversion is known as explicit conversion or casting a value.
The general form of a cast is:

(type-name)expression

where type-name is one of the standard C data types. The expression may be a constant,
variable or an expression. Some examples of casts and their actions are shown in Table 3.7.

Table 3.7 Use of Casts

Example “Action
x=(nt)7.5 7.5 s converted to integer by truncation.
a=(int) 21 3/(in}4.5 Evaluated as 21/4 and the result would be 5

Division is done in floating point mode.

The result of a+b is converted to integer.

ais converted to integer and then added to b.
p=cos((double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:
x=(int) (+0.5);

If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is
assigned to x. Of course, the expression, being cast is not changed.

operator precedence and associativity
c has a precedence associated with it.there are distinct levels of precedence.the operators at higher level of precedence are evaluated first.the operators at same precedence are evaluated either from lfet to right or right to left.
For ex: if(x==10+15&&y<10)

The precedence rules say addition operator has highest priority and a logical operator (&&)and the relational operator(==and<)therefore the addition of 10 and 15 is executed first.this is equivalent to

If(x==25&&y=10) x=20 y=5

Then X==25 is false Y<10 is true < has higher precedence than == y<10 is tested first then x==25 If(false&&true) One condition is false,the complex condition os false.

Mathematical functions
Mathematical functions such as cos,sqrt,log are frequently used in analysis of real –life problems,it is implemented by compiler using math functions.

Math functions

acos(x),asin(x), atan(x),cosh(x),floor(x),log(x),pow(x,y).
