AIR MASSES: DEFINITIONS

- Air masses is A body of air with more-or-less uniform physical properties over horizontal distances of hundreds of kilometres
- Large unit of air in which temperature and moisture conditions are uniform at a given altitude.
- The air with distinctive characteristics in terms of temperature and humidity is called an air mass. It is a large body of air having little horizontal variation in temperature and moisture.
- An air mass is a large mass of air that has similar characteristics of temperature and humidity within it

AIR MASSES CHARACTERISTICS

- They may cover hundreds or thousands of squares miles
- It adopt the characteristic of the surface below them.
- The region from where the air masses is origination is known as source region.
- Air masses are slowly pushed along by highlevel winds
- when an air mass moves over a new region, it shares its temperature and humidity with that region.

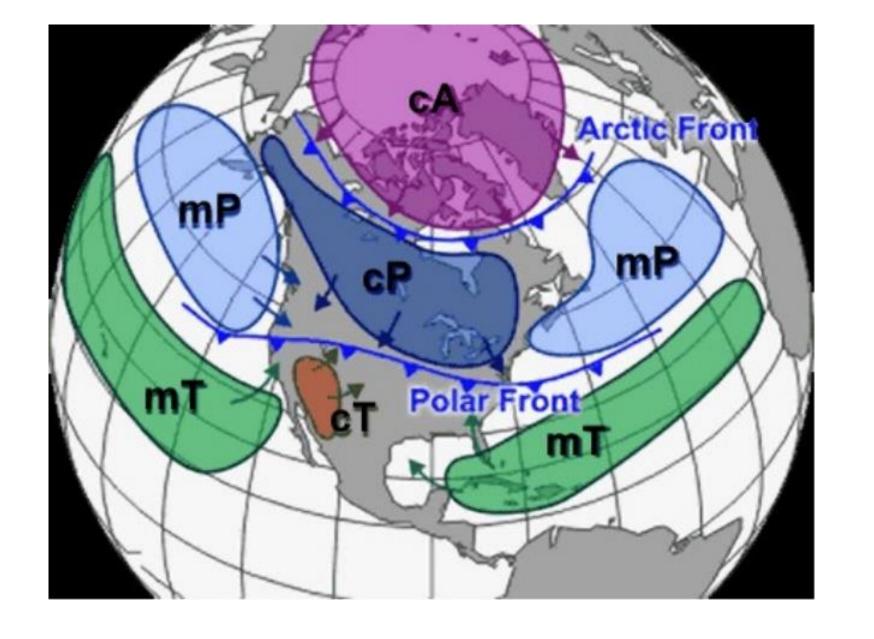
Air Mass Classification System

First Lowercase Letter:

Indicates whether air originates over an ocean or continent

m = Maritime c = Continental

Second Uppercase Letter


Indicates whether air originates over tropical or polar latitudes.

T = Tropics P = Poles

From combining these four, all the air masses can be described.

Classifying Air Masses

- Using this classification scheme, there are four basic types of air masses.
 - -<u>Continental Polar</u> (cP) = Dry and cool.
 - <u>Continental Tropical</u> (cT) = Dry and warm or hot.
 - -Maritime Polar (mP) = humid and cold.
 - -Maritime Tropical (mT) = Humid and warm.

Continental Polar Air Masses (CP)

- Source regions of these air masses are the Arctic basin, northern North America, Eurasia and Antarctica.
- These air masses are characterized by dry, cold and stable conditions.
- The weather during winter is frigid, clear and stable.

Maritime Polar Air Masses (MP)

- The source region of these air masses are the oceans between 40° and 60° latitudes.
- These are actually those continental polar air masses which have moved over the warmer oceans, got heated up and have collected moisture.
- The conditions over the source regions are cool, moist and unstable. These are the regions which cannot lie stagnant for long.
- The weather during winters is characterized by high humidity, overcast skies and occasional

Continental Tropical Air Masses (CT

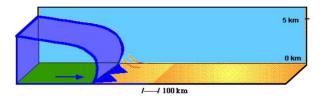
- The source-regions of the air masses includ tropical and sub-tropical deserts of Sahara ir Africa, and of West Asia and Australia.
- These air masses are dry, hot and stable and do not extend beyond the source.
- They are dry throughout the year.

Maritime Tropical Air Masses (MT)

- The source regions of these air masses include the oceans in tropics and sub-tropics such as Mexican Gulf, the Pacific and the Atlantic oceans.
- These air masses are warm, humid and unstable.
- The weather during winter has mild temperatures, overcast skies with fog.
- During summer, the weather is characterized by high temperatures, high humidity, cumulous clouds and convectional rainfall.

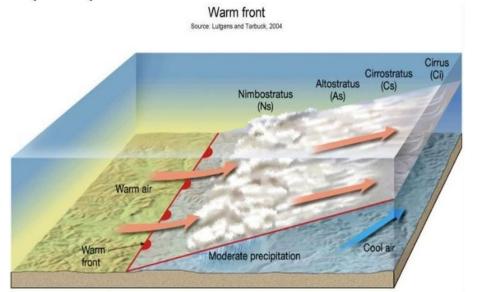
FRONT

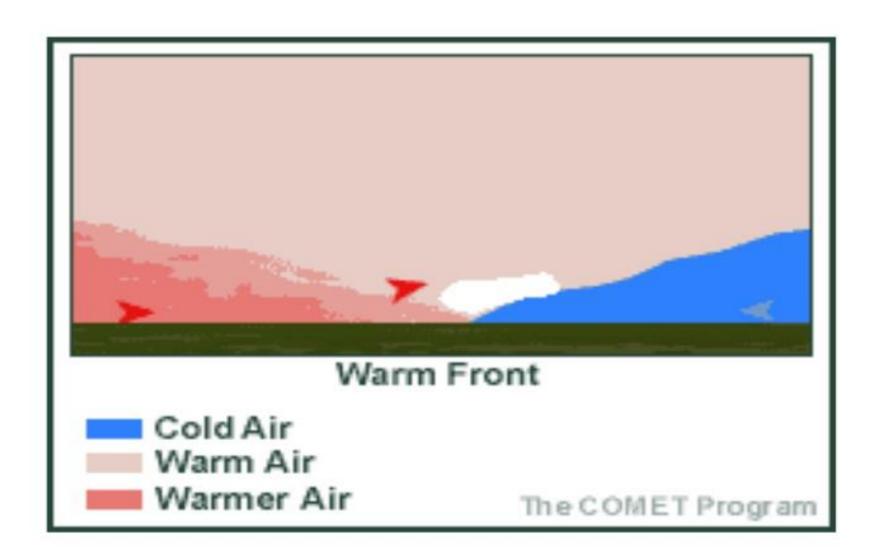
- A weather front is a boundary separating two masses of air of different densities
- Fronts occur at the boundaries of converging air masses which come together from different parts of the world
- The two air masses don't merge readily due to the effect of the converging atmospheric circulation, relatively low diffusion coefficient and a low thermal conductivity.


- The process of formation of a front is known as Frontogenesis
- dissipation of a front is known as Frontolysis
- Mid-latitude cyclones or temperate cyclones or extra-tropical cyclones occur due to frontogenesis.

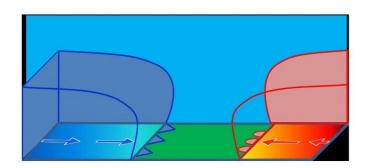
Classification of Fronts

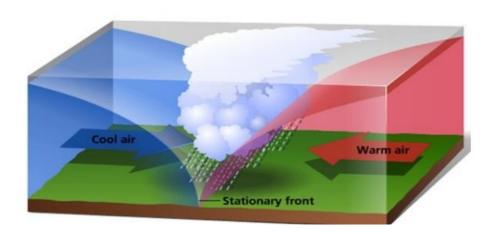
ype of Front	How It Forms	Weather It Brings
Cold front Cold air Warm air Front moving this way	Forms when a cold air mass pushes under a warm air mass, forcing the warm air to rise.	Thunderheads can form as the moisture in the warm air mass rises, cools, and condenses. As the front moves through, cool, fair weather is likely to follow.
Warm front Warm air Cold air Front moving this way	Forms when a moist, warm air mass slides up and over a cold air mass.	As the warm air mass rises, it condenses into a broad area of clouds. A warm front brings gentle rain or light snow, followed by warmer, milder weather.
Cold air Warm air Little or no forward movement of the front	Forms when warm and cold air meet and neither air mass has the force to move the other. They remain stationary, or "standing still."	Where the warm and cold air meet, clouds and fog form, and it may rain or snow. Can bring many days of clouds and precipitation.
Occluded Front Warm air Cold air Front moving this way	Forms when a warm air mass gets caught between two cold air masses. The warm air mass rises as the cool air masses push and meet in the middle.	The temperature drops as the warm air mass is occluded, or "cut off," from the ground and pushed upward. Can bring strong winds and heavy precipitation.


1)Cold Front


- A cold front occurs when a cold air mass meets and forces a warm air mass to move upward.
- Because the moving cold air is more dense, it moves under the less-dense warm air..
- Associated with cumulus & cumulonimbus
- Slopes of 1/50 to 1/150
- Cold fronts can move very fast, producing thunderstorms, heavy rain, or snow.
- Symbol -

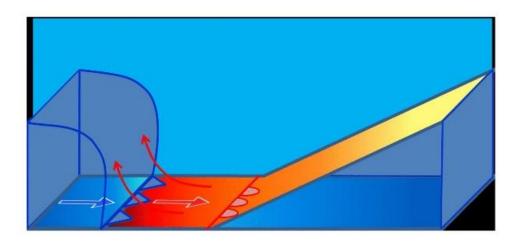
2)Warm Front


- A warm front occurs when a warm air mass meets and overrides a cold air mass.
- The warm air gradually replaces the cold air.
- Slope ranges from 1/100 to 1/300.
- Generally associated with stratus type clouds, overcast skies, fog, and general rain or snow.
- This lifting is generally much more smooth and slow than a cold front.
- Warm fronts generally bring drizzly precipitation.



3)Stationary Front

- Sometimes cold and warm air masses meet, but neither air mass moves over or under the other. This is known as a stationary front.
- The wind motion on both sides of the front is parallel to the front.
- Warm or cold front stops moving, so the name stationary front.
- A stationary front can bring many days of clouds and precipitation.
- · Symbol -



4) OCCLUDED FRONT

- A warm air mass sometimes is caught between two cooler air masses. OR a cold front catches up to a slower-moving warm front. This forms an occluded front.
- In an occluded front, the warm air mass is cut off from the ground as it is lifted above the two other air masses.
- This produces cool temperatures and large amounts of precipitation.

· Symbol -

THANK YOU